Journal of Optimization Theory and Applications

, Volume 142, Issue 2, pp 399–416 | Cite as

Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications

  • B. K. Pagnoncelli
  • S. Ahmed
  • A. Shapiro


We study sample approximations of chance constrained problems. In particular, we consider the sample average approximation (SAA) approach and discuss the convergence properties of the resulting problem. We discuss how one can use the SAA method to obtain good candidate solutions for chance constrained problems. Numerical experiments are performed to correctly tune the parameters involved in the SAA. In addition, we present a method for constructing statistical lower bounds for the optimal value of the considered problem and discuss how one should tune the underlying parameters. We apply the SAA to two chance constrained problems. The first is a linear portfolio selection problem with returns following a multivariate lognormal distribution. The second is a joint chance constrained version of a simple blending problem.


Chance constraints Sample average approximation Portfolio selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charnes, A., Cooper, W.W., Symmonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958) CrossRefGoogle Scholar
  2. 2.
    Prékopa, A.: Stochastic Programming. Kluwer Academic, Dordrecht (1995) Google Scholar
  3. 3.
    Dupačová, J., Gaivoronski, A., Kos, Z., Szántai, T.: Stochastic programming in water management: a case study and a comparison of solution techniques. Eur. J. Oper. Res. 52, 28–44 (1991) MATHCrossRefGoogle Scholar
  4. 4.
    Henrion, R., Li, P., Möller, A., Steinbach, S.G., Wendt, M., Wozny, G.: Stochastic optimization for operating chemical processes under uncertainty. In: Grötschel, M., Krunke, S., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 457–478. Springer, Berlin (2001) Google Scholar
  5. 5.
    Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45, 247–262 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in OR & MS, vol. 10, pp. 353–425. North-Holland, Amsterdam (2003) Google Scholar
  10. 10.
    Atlason, J., Epelman, M.A., Henderson, S.G.: Optimizing call center staffing using simulation and analytic center cutting plane methods. Manag. Sci. 54, 295–309 (2008) CrossRefGoogle Scholar
  11. 11.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) MATHCrossRefGoogle Scholar
  13. 13.
    Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1996) MathSciNetGoogle Scholar
  14. 14.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum observations. Ann. Math. Stat. 23, 493–507 (1952) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Markowitz, H.: Portfolio selection. J. Financ. 7, 77–97 (1952) CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Chen, Z., Zhang, K.: A chance-constrained portfolio selection problem under t-distribution. Asia Pac. J. Oper. Res. 24(4), 535–556 (2007) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust convex programs. Optimization online ( (2007)
  18. 18.
    Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control. 51, 742–753 (2006) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic Programming (lecture notes) (2007) Google Scholar
  20. 20.
    Law, A., Kelton, W.D.: Simulation Modeling and Analysis. Industrial Engineering and Management Science Series. McGraw–Hill Science/Engineering/Math, New York (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations