Advertisement

Journal of Optimization Theory and Applications

, Volume 142, Issue 3, pp 533–556 | Cite as

Coupled Aerostructural Design Optimization Using the Kriging Model and Integrated Multiobjective Optimization Algorithm

  • X. B. Lam
  • Y. S. Kim
  • A. D. Hoang
  • C. W. Park
Article

Abstract

The paper develops and implements a highly applicable framework for the computation of coupled aerostructural design optimization. The multidisciplinary aerostructural design optimization is carried out and validated for a tested wing and can be easily extended to complex and practical design problems. To make the framework practical, the study utilizes a high-fidelity fluid/structure interface and robust optimization algorithms for an accurate determination of the design with the best performance. The aerodynamic and structural performance measures, including the lift coefficient, the drag coefficient, Von-Mises stress and the weight of wing, are precisely computed through the static aeroelastic analyses of various candidate wings. Based on these calculated performance, the design system can be approximated by using a Kriging interpolative model. To improve the design evenly for aerodynamic and structure performance, an automatic design method that determines appropriate weighting factors is developed. Multidisciplinary aerostructural design is, therefore, desirable and practical.

Keywords

Fluid/structure interface (FSI) Global optimization Multiobjective optimization Kriging model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sobieski, J.S., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. AIAA J., AIAA-96-0711 (1996) Google Scholar
  2. 2.
    Wakayama, S.R.: Lifting surface design using multidisciplinary optimization. Ph.D. Thesis, Stanford University (1997) Google Scholar
  3. 3.
    Walsh, J.L., Townsend, J.C., Salas, A.O., Samareh, J.A., Mukhopadhyay, V., Barthelemy, J.-F.: Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles. AIAA J., AIAA-2000-0418 (2000) Google Scholar
  4. 4.
    Martins, R.R.A.: A coupled-adjoint method for high-fidelity aero-structural optimization. Ph.D. Thesis, Stanford University (2002) Google Scholar
  5. 5.
    Venkataraman, S., Haftka, R.T.: Structural optimization complexity: what has Moore’s law done for us. J. Struct. Multidiscip. Optim. 28, 375–387 (2004) CrossRefGoogle Scholar
  6. 6.
    Kim, Y., Kim, J., Jeon, Y., Bang, J., Lee, D.-H., Kim, Y., Park, C.W.: Multidisciplinary aerodynamic-structural design optimization of supersonic fighter wing using response surface methodology. AIAA J., AIAA-2002-0322 (2002) Google Scholar
  7. 7.
    Giunta, A.A.: Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. Ph.D. Thesis, University of Virginia (1997) Google Scholar
  8. 8.
    Giunta, A.A., Balabanov, V., Haim, D., Grossman, B., Mason, W.H., Watson, L.T., Haftka, R.T.: Wing design for a high-speed civil transport using a design of experiments methodology. AIAA J., AIAA-96-4001 (1996) Google Scholar
  9. 9.
    Joaquim, R.R., Alonso, J.J., Reuther, J.: Aero-Structural Wing Design Optimization using high-fidelity sensitivity analysis. In: Proceeding to CEAS Conference on Multidisciplinary Aircraft Design Optimization, Germany. Confederation of European Societies (2001) Google Scholar
  10. 10.
    Chittick, I.R., Martins, J.R.R.A.: Aero-structural optimization using adjoint coupled post-optimality sensitivities. J. Struct. Multidiscip. Optim. DOI  10.1007/s00158-007-0200-9 (2007) Google Scholar
  11. 11.
    Gumbert, C.R., Newman, P.A.: High-fidelity computational optimization for 3-D flexible wings. J. Optim. Eng. 6, 117–156 (2005) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kumano, T., Jeong, S., Obayashi, S., Ito, Y., Hatanaka, K., Morino, H.: Multidisciplinary design optimization of wing shape with nacelle and pylon. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, TU Delft, The Netherlands (2006) Google Scholar
  13. 13.
    Weck, O.D., Agte, J., Sobieski, J.S., Arendsen, P., Morris, A., Spieck, M.: State-of-the-art and future trends in multidisciplinary design optimization. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Hawaii, USA. AIAA-2007-1905 (2007) Google Scholar
  14. 14.
    Martins, J.R.R.A., Marriage, C.: An objective-oriented framework for multidisciplinary design optimization. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Hawaii, USA. AIAA-2007-1906 (2007) Google Scholar
  15. 15.
    Kamakoti, R., Shyy, W.: Fluid-structure interaction for aeroelastic applications. Prog. Aerospace Sci. 40, 535–558 (2005) CrossRefGoogle Scholar
  16. 16.
    Guruswamy, G.P.: A review of numerical fluids/structures interface methods for computations using high-fidelity equations. J. Comput. Struct. 80, 31–41 (2001) CrossRefGoogle Scholar
  17. 17.
    Hounjet, M.H.L., Meijer, J.J.: Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis. National Aerospace Laboratory NRL, NLR-TP-95690 U (1995) Google Scholar
  18. 18.
    Bhadra, S., Ganguli, R.: Aeroelastic optimization of a helicopter rotor using orthogonal array-based metamodels. AIAA J. 44(9), 1941–1951 (2006) CrossRefGoogle Scholar
  19. 19.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1996) MATHGoogle Scholar
  20. 20.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New Jersey (1999) MATHGoogle Scholar
  21. 21.
    Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. Massachusetts (1996) Google Scholar
  22. 22.
    Friedman, J.H.: Multivariate adaptive regression splines, invited paper. Ann. Stat. 19(1), 1–67 (1991) MATHCrossRefGoogle Scholar
  23. 23.
    Turner, C.J., Crawford, R.H., Campbell, M.I.: Multidimensional sequential sampling for NURBs-based metamodel development. J. Eng. Comput. 23, 155–174 (2007) CrossRefGoogle Scholar
  24. 24.
    Mullur, A.A., Messac, A.: Extended radial basis functions: More flexible and effective metamodeling. AIAA J. 43(6), 1306–1315 (2005) CrossRefGoogle Scholar
  25. 25.
    Mullur, A.A., Messac, A.: Metamodeling using extended radial basis functions: A comparative approach. J. Eng. Comput. 21, 203–217 (2006) CrossRefGoogle Scholar
  26. 26.
    Koehler, J.R., Owen, A.B.: Computer Experiments. Handbook of Statistics 13: Design and Analysis of Experiments. Elsevier, Amsterdam (1996) Google Scholar
  27. 27.
    Giunta, A.A., Watson, L.T.: A comparison of approximation modeling techniques: Polynomial versus interpolating models. AIAA J., AIAA-98-4758 (1998) Google Scholar
  28. 28.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. J. Stat. Sci. 4(4), 409–423 (1989) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Jeong, S., Murayama, M., Yamamoto, K.: Efficient optimization design method using Kriging model. AIAA J., AIAA-2004-118 (2004) Google Scholar
  30. 30.
    Simpson, T.W., Dennis, L., Chen, W.: Sampling strategies for computer experiments: design and analysis. Int. J. Reliab. Appl. 23(2), 209–240 (2001) Google Scholar
  31. 31.
    Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.-J.: Approximation methods in multidisciplinary analysis and optimization: A panel discussion. J. Struct. Multidiscip. Optim. 27, 302–313 (2004) Google Scholar
  32. 32.
    Martin, J.D., Simpson, T.W.: Use of Kriging models to approximate deterministic computer models. AIAA J. 43(4), 853–863 (2005) CrossRefGoogle Scholar
  33. 33.
    Clarke, S.M., Griebsch, J.H., Simpson, T.W.: Analysis of support vector regression for approximation of complex engineering analyses. ASME J. 127, 1077–1087 (2005) CrossRefGoogle Scholar
  34. 34.
    Maisuradze, G.G., Thompson, D.L.: Interpolating moving least-squares methods for fitting potential energy surfaces: illustrative approaches and applications. J. Phys. Chem. A 107(37), 7118–7124 (2003) Google Scholar
  35. 35.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Longman Inc, Cambridge (1989) MATHGoogle Scholar
  36. 36.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996) MATHGoogle Scholar
  37. 37.
    Yang, G., Reinstein, L.E., Pai, S., Xu, Z.: A new genetic algorithm technique in optimization of permanent prostate implants. J. Med. Phys. 25(12), 2308–2315 (1998) CrossRefGoogle Scholar
  38. 38.
    Carroll, D.L.: Chemical laser modeling with genetic algorithms. AIAA J. 34(2), 338–346 (1996) CrossRefGoogle Scholar
  39. 39.
    Arora, J.S.: Introduction to optimum design. Elsevier Academic, San Diego (2004) Google Scholar
  40. 40.
    Arora, J.S., Elwakeil, O.A., Chahande, A.I., Hsieh, C.C.: Global optimization methods for engineering applications: A review. J. Struct. Optim. 9, 137–159 (1995) CrossRefGoogle Scholar
  41. 41.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. J. Sci. 220(4598), 671–680 (1983) MathSciNetGoogle Scholar
  42. 42.
    Goffe, W.L., Ferrier, G.D., Rogers, J.: Global optimization of statistical functions with simulated annealing. J. Econom. 60(1/2), 65–100 (1993) Google Scholar
  43. 43.
    Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the ‘Simulated Annealing’ algorithm. ACM Trans. Math. Softw. 13(3), 262–280 (1987) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Yao, X.: Simulated annealing with extended neighbourhood. Int. J. Comput. Math. 40, 169–189 (1991) MATHCrossRefGoogle Scholar
  45. 45.
    Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007) MATHGoogle Scholar
  46. 46.
    Deb, K.: Current trends in evolutionary multi-objective optimization. Int. J. Simul. Multidiscip. Des. Optim. 1, 1–8 (2007) MATHCrossRefGoogle Scholar
  47. 47.
    Marler, R.T.: A study of multi-objective optimization methods for engineering applications. Ph.D. Thesis, University of Iowa (2005) Google Scholar
  48. 48.
    FLUENT INC: Fluent User’s Manual. Fluent Inc, New Hampshire (2005) Google Scholar
  49. 49.
    Blom, F.J.: Considerations on the spring analogy. Int. J. Numer. Methods Fluids 32, 647–668 (2000) MATHCrossRefGoogle Scholar
  50. 50.
    Tsai, H.M., Wong, A.S.F., Cai, J., Zhu, Y., Liu, F.: Unsteady flow calculations with a parallel multiblock moving mesh algorithm. AIAA J. 39(6), 1021–1029 (2000) CrossRefGoogle Scholar
  51. 51.
    Dubuc, L., Cantariti, F., Woodgate, M., Gribben, B., Badcock, K.J., Richards, B.E.: A grid deformation technique for unsteady flow computations. Int. J. Numer. Methods Fluids 32, 285–311 (2000) MATHCrossRefGoogle Scholar
  52. 52.
    Spekreijse, S.P., Prananta, B.B., Kok, J.C.: A simple, robust and fast algorithm to compute deformations of multi-block structured grids. National Aerospace Laboratory NLR, NLR-TP-2002-105 (2002) Google Scholar
  53. 53.
    Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of Grid Generation. CRC Press LLC, Boca Raton (1999) MATHGoogle Scholar
  54. 54.
    Sadeghi, M., Liu, F., Lai, K.L., Tsai, H.M.: Application of three-dimensional interfaces for data transfer in aeroelastic computations. AIAA J., AIAA-2004-5376 (2004) Google Scholar
  55. 55.
    Dowell, E.H., Hall, K.C.: Modeling of fluid-structure interaction. J. Fluid Mech. 33, 445–490 (2001) Google Scholar
  56. 56.
    Hirsch, C.: Numerical Computation of Internal and External Flows. Butterworth-Heinemann, Oxford (2007) Google Scholar
  57. 57.
    Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier Science Ltd, Oxford (2001) MATHGoogle Scholar
  58. 58.
    Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  59. 59.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002) MATHGoogle Scholar
  60. 60.
    Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, Columbus (1995) Google Scholar
  61. 61.
    Pointwise: Gridgen User’s Manual. Pointwise Inc, Texas, USA (2005) Google Scholar
  62. 62.
    Zienkiewicz, O.C., Taylor, L.R.: The Finite Element Method, 5th edn. Butterworth-Heinemann, Oxford (2000) MATHGoogle Scholar
  63. 63.
    Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996) Google Scholar
  64. 64.
    Smith, I.M., Griffiths, D.V.: Programming the Finite Element Method. Wiley, Chichester (2004) MATHGoogle Scholar
  65. 65.
    Reddy, J.N.: An introduction to the Finite Element Method, 3rd edn. McGraw-Hill, New York (2006) Google Scholar
  66. 66.
    Liu, G.R., Quek, S.S.: The Finite Element Method—A Practical Course. Butterworth-Heinemann, Oxford (2003) MATHGoogle Scholar
  67. 67.
    Ribo, R., Pasenau, M.D.R., Escolano, E., Ronda, J.S.P., Sans, A.C., Gonzalez, L.F.: GiD User’s Manual. CIMNE, Barcelona, Spain (2007) Google Scholar
  68. 68.
    Mitchell, T.J., Morris, M.D.: Bayesian design and analysis of computer experiments: Two examples. J. Stat. Sinica 2, 359–379 (1992) MATHGoogle Scholar
  69. 69.
    The Mathworks: Matlab User’S Manual. The MathWorks Inc, Massachusetts, USA (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. B. Lam
    • 1
  • Y. S. Kim
    • 1
  • A. D. Hoang
    • 1
  • C. W. Park
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering, ReCAPTGyeongsang National UniversityGajwadongSouth Korea

Personalised recommendations