Skip to main content
Log in

Stability Analysis of an Optimal Control Problem for a Hyperbolic Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we derive some results concerning the continuous dependence on parameters of optimal solutions to an optimal control problem that involves a quasilinear hyperbolic differential equation with a boundary condition and a nonlinear integral functional of action; continuous dependence of such kind is sometimes referred to as stability or sensitivity. To present a sufficient condition for the continuous dependence, we use the Kuratowski–Painlevé upper limit of a sequence of sets. Also offered is a technical interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majewski, M.: On the existence of optimal solutions to an optimal control problem. J. Optim. Theory Appl. 128(3), 635–651 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Malanowski, K.: Stability and sensitivity analysis of solutions to infinite-dimensional optimization problems. In: Henry, J., Yvon, J.-P. (eds.) System Modelling and Optimization, pp. 109–127. Springer, London (1994)

    Chapter  Google Scholar 

  3. Cullum, J.: Perturbations of optimal control problems. SIAM J. Control 4, 473–487 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  4. Denkowski, Z., Migórski, S.: Control problems for parabolic and hyperbolic equations via the theory of G- and Γ-convergence. Ann. Mat. Pura Appl. Ser. IV 149, 23–39 (1987)

    Article  Google Scholar 

  5. Migórski, S.: On asymptotic limits of control problems with parabolic and hyperbolic equations. Rivista Mat. Pura Appl. 12, 33–50 (1993)

    MATH  Google Scholar 

  6. Migórski, S.: Convergence of optimal solutions in control problems for hyperbolic equations. Ann. Pol. Math. 62(2), 111–121 (1995)

    MATH  Google Scholar 

  7. Denkowski, Z., Migórski, S.: On sensitivity of optimal solutions to control problems for hyperbolic hemivariational inequalities. In: Cagnol, J., Zolésio, J.-P. (eds.) Control and Boundary Analysis, pp. 145–156. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  8. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  9. Walczak, S.: On the continuous dependence on parameters of solutions of the Dirichlet problem. Acad. R. Belg. Bull. Classe Sci. Sér. 6 6(7–12), 247–261, 263–273 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Walczak, S.: Well-posed and ill-posed optimal control problems. J. Optim. Theory Appl. 109(1), 169–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic/PWN, Dordrecht/Warsaw (1991)

    Google Scholar 

  12. Walczak, S.: Absolutely continuous functions of several variables and their application to differential equations. Bull. Pol. Acad. Sci. Math. 35(11–12), 733–744 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Idczak, D., Walczak, S.: On Helly’s theorem for functions of several variables and its applications to variational problems. Optim. J. Math. Program. Oper. Res. 30(4), 331–343 (1994)

    MATH  MathSciNet  Google Scholar 

  14. Bielecki, A.: Une remarque sur l’application de la méthode de Banach–Cacciopoli–Tikhonov dans la théorie de l’équation s=f(x,y,z,p,q). Bull. Acad. Pol. Sci. Cl. III 4, 265–268 (1956)

    MATH  MathSciNet  Google Scholar 

  15. Idczak, D., Kibalczyc, K., Walczak, S.: On an optimization problem with cost of rapid variation of control. J. Aust. Math. Soc. Ser. B 36(1), 117–131 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cesari, L.: Optimization—Theory and Applications. Springer, New York (1983)

    MATH  Google Scholar 

  17. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  18. Idczak, D., Walczak, S.: On the existence of a solution for some distributed optimal control hyperbolic system. Int. J. Math. Math. Sci. 23(5), 297–311 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover, New York (1990)

    Google Scholar 

  20. Rehbock, V., Wang, S., Teo, K.L.: Computing optimal control with hyperbolic partial differential equation. J. Aust. Math. Soc. Ser. B 40(2), 266–287 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Majewski.

Additional information

Communicated by E. Zuazua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majewski, M. Stability Analysis of an Optimal Control Problem for a Hyperbolic Equation. J Optim Theory Appl 141, 127–146 (2009). https://doi.org/10.1007/s10957-008-9504-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9504-1

Keywords

Navigation