Stability Analysis of an Optimal Control Problem for a Hyperbolic Equation

  • M. Majewski


In this paper, we derive some results concerning the continuous dependence on parameters of optimal solutions to an optimal control problem that involves a quasilinear hyperbolic differential equation with a boundary condition and a nonlinear integral functional of action; continuous dependence of such kind is sometimes referred to as stability or sensitivity. To present a sufficient condition for the continuous dependence, we use the Kuratowski–Painlevé upper limit of a sequence of sets. Also offered is a technical interpretation of the results.


Stability analyses Sensitivity analyses Optimal solutions Optimal control problems Goursat–Darboux problem Kuratowski–Painlevé upper limit 


  1. 1.
    Majewski, M.: On the existence of optimal solutions to an optimal control problem. J. Optim. Theory Appl. 128(3), 635–651 (2006) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Malanowski, K.: Stability and sensitivity analysis of solutions to infinite-dimensional optimization problems. In: Henry, J., Yvon, J.-P. (eds.) System Modelling and Optimization, pp. 109–127. Springer, London (1994) CrossRefGoogle Scholar
  3. 3.
    Cullum, J.: Perturbations of optimal control problems. SIAM J. Control 4, 473–487 (1966) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Denkowski, Z., Migórski, S.: Control problems for parabolic and hyperbolic equations via the theory of G- and Γ-convergence. Ann. Mat. Pura Appl. Ser. IV 149, 23–39 (1987) CrossRefGoogle Scholar
  5. 5.
    Migórski, S.: On asymptotic limits of control problems with parabolic and hyperbolic equations. Rivista Mat. Pura Appl. 12, 33–50 (1993) MATHGoogle Scholar
  6. 6.
    Migórski, S.: Convergence of optimal solutions in control problems for hyperbolic equations. Ann. Pol. Math. 62(2), 111–121 (1995) MATHGoogle Scholar
  7. 7.
    Denkowski, Z., Migórski, S.: On sensitivity of optimal solutions to control problems for hyperbolic hemivariational inequalities. In: Cagnol, J., Zolésio, J.-P. (eds.) Control and Boundary Analysis, pp. 145–156. Chapman & Hall/CRC, Boca Raton (2005) Google Scholar
  8. 8.
    Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990) MATHGoogle Scholar
  9. 9.
    Walczak, S.: On the continuous dependence on parameters of solutions of the Dirichlet problem. Acad. R. Belg. Bull. Classe Sci. Sér. 6 6(7–12), 247–261, 263–273 (1995) MATHMathSciNetGoogle Scholar
  10. 10.
    Walczak, S.: Well-posed and ill-posed optimal control problems. J. Optim. Theory Appl. 109(1), 169–185 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic/PWN, Dordrecht/Warsaw (1991) Google Scholar
  12. 12.
    Walczak, S.: Absolutely continuous functions of several variables and their application to differential equations. Bull. Pol. Acad. Sci. Math. 35(11–12), 733–744 (1987) MATHMathSciNetGoogle Scholar
  13. 13.
    Idczak, D., Walczak, S.: On Helly’s theorem for functions of several variables and its applications to variational problems. Optim. J. Math. Program. Oper. Res. 30(4), 331–343 (1994) MATHMathSciNetGoogle Scholar
  14. 14.
    Bielecki, A.: Une remarque sur l’application de la méthode de Banach–Cacciopoli–Tikhonov dans la théorie de l’équation s=f(x,y,z,p,q). Bull. Acad. Pol. Sci. Cl. III 4, 265–268 (1956) MATHMathSciNetGoogle Scholar
  15. 15.
    Idczak, D., Kibalczyc, K., Walczak, S.: On an optimization problem with cost of rapid variation of control. J. Aust. Math. Soc. Ser. B 36(1), 117–131 (1994) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cesari, L.: Optimization—Theory and Applications. Springer, New York (1983) MATHGoogle Scholar
  17. 17.
    Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996) MATHGoogle Scholar
  18. 18.
    Idczak, D., Walczak, S.: On the existence of a solution for some distributed optimal control hyperbolic system. Int. J. Math. Math. Sci. 23(5), 297–311 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover, New York (1990) Google Scholar
  20. 20.
    Rehbock, V., Wang, S., Teo, K.L.: Computing optimal control with hyperbolic partial differential equation. J. Aust. Math. Soc. Ser. B 40(2), 266–287 (1998) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of ŁódźLodzPoland

Personalised recommendations