Statistical Inferences for Termination of Markov Type Random Search Algorithms



In this paper, we consider the application of order statistics to establish the optimality in stochastic and heuristic optimization algorithms. A method for estimating the minimum value with an associated confidence interval is developed using the formalism of the theory of order statistics for i.i.d. variables; we examine it by computer simulation. We build a method for the estimation of confidence intervals of the minimum value using order statistics, implemented for optimality testing and stopping in Markov type random search algorithms. The efficiency of this approach is discussed, using the results of application to stochastic approximation and simulated annealing.


Order statistics Monte Carlo simulation Continuous optimization Simulated annealing Stochastic approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mockus, J.: Multi-Extremal Problems in Engineering Design. Nauka, Moscow (1967) (in Russian) Google Scholar
  2. 2.
    Zilinskas, A., Zhigljavsky, A.: Methods of the Global Extreme Searching. Nauka, Moscow (1991) (in Russian) Google Scholar
  3. 3.
    Chen, H.: Estimation of the location of the maximum of a regression function using extreme order statistics. J. Multivar. Anal. 57, 191–214 (1996) MATHCrossRefGoogle Scholar
  4. 4.
    Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in GRASP: An experimental investigation. J. Heuristics 8(3), 343–373 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems for Local and Global Optimization. Kluwer Academic, Dordrecht (1999) Google Scholar
  6. 6.
    Hutchison, D.W., Spall, J.C.: A method for stopping nonconvergent stochastic approximation processes. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, December 12–15, 2005, pp. 6620–6625 Google Scholar
  7. 7.
    Ermoliev, Yu.M.: Methods of Stochastic Programming. Nauka, Moscow (1976) (in Russian) Google Scholar
  8. 8.
    Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer, New York (2003) MATHGoogle Scholar
  9. 9.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953) CrossRefGoogle Scholar
  10. 10.
    Yang, R.L.: Convergence of the simulated annealing algorithm for continuous global optimization. J. Optim. Theory Appl. 104(3), 691–716 (2000) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rastrigin, L.A.: Statistical Search Methods. Nauka, Moscow (1968) Google Scholar
  12. 12.
    Ravindran, A., Ragsdell, K.M., Reklaitis, G.V.: Engineering Optimization: Methods and Applications. Wiley, New York (2006) Google Scholar
  13. 13.
    Galambosh, Y.: Asymptotic Theory of Extremal Order Statistics. Nauka, Moscow (1984) (in Russian) Google Scholar
  14. 14.
    Hall, P.: On estimating the endpoint of a distribution. Ann. Stat. 10, 556–568 (1982) MATHCrossRefGoogle Scholar
  15. 15.
    Balakrishnan, N., Cohen, A.: Order Statistics & Inference: Estimation Methods. Academic, New York (1990) Google Scholar
  16. 16.
    Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975) MATHCrossRefGoogle Scholar
  17. 17.
    Vasan, M.T.: Stochastic Approximation. Transactions in Mathematics and Mathematical Physics. Cambridge University Press, Cambridge (1969) Google Scholar
  18. 18.
    Mikhalevitch, V.S., Gupal, A.M., Norkin, V.I.: Methods of Nonconvex Optimization. Nauka, Moscow (1987) (in Russian) Google Scholar
  19. 19.
    Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Hoboken (2003) MATHCrossRefGoogle Scholar
  20. 20.
    Bagirov, A.M., Ghosh, M., Webb, D.: A derivative-free method for linearly constrained nonsmooth optimization. J. Ind. Manag. Optim. 2(3), 319–338 (2006) MATHMathSciNetGoogle Scholar
  21. 21.
    Bartkute, V., Sakalauskas, L.: Simultaneous perturbation stochastic approximation for nonsmooth functions. Eur. J. Oper. Res. 181(3), 1174–1188 (2007) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bartkute, V., Sakalauskas, L.: Application of stochastic approximation in technical design. In: Computer Aided Methods in Optimal Design and Operations. Series on Computers and Operations Research, vol. 7, pp. 29–38 (2006) Google Scholar
  23. 23.
    Luksan, L., Vlcek, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. (1999)

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations