Advertisement

Journal of Optimization Theory and Applications

, Volume 139, Issue 2, pp 277–293 | Cite as

Exponential Stability for Time-Delay Systems with Interval Time-Varying Delays and Nonlinear Perturbations

  • O. M. Kwon
  • J. H. Park
Article

Abstract

In this paper, the problem of an exponential stability for time-delay systems with interval time-varying delays and nonlinear perturbations is investigated. Based on the Lyapunov method, a new delay-dependent criterion for exponential stability is established in terms of LMI (linear matrix inequalities). Numerical examples are carried out to support the effectiveness of our results.

Keywords

Exponential stability Interval time-varying delays Nonlinear perturbations Linear matrix inequalities Lyapunov method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hale, J., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993) MATHGoogle Scholar
  2. 2.
    Kolmanovskii, V.B., Myshkis, A.: Applied Theory of Functional Differential Equation. Kluwer Academic, Boston (1992) Google Scholar
  3. 3.
    Hu, G.D., Hu, G.D.: Some simple stability criteria of neutral-differential systems. Appl. Math. Comput. 80, 257–271 (1996) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kwon, O.M., Park, J.H.: An improved delay-dependent robust control for uncertain time-delay systems. IEEE Trans. Autom. Control 49, 1991–1995 (2004) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Park, J.H., Won, S.: Asymptotic stability of neutral systems with multiple delays. J. Optim. Theory Appl. 103, 187–200 (1999) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Yue, D., Won, S., Kwon, O.: Delay dependent stability of neutral systems with time delay: an LMI approach. IEE Proc. Control Theory Appl. 150, 23–27 (2003) CrossRefGoogle Scholar
  7. 7.
    Park, J.H., Kwon, O.M.: Controlling uncertain neutral dynamic systems with delay in control input. Chaos, Solitons Fractals 26, 805–812 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kwon, O.M., Park, J.H.: Robust stabilization of uncertain systems with delays in control input. Appl. Math. Comput. 172, 1067–1077 (2006) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kwon, O.M., Park, J.H.: Robust H filtering for uncertain time-delay systems: matrix inequality approach. J. Optim. Theory Appl. 129, 309–324 (2006) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kwon, O.M., Park, J.H.: Decentralized guaranteed cost control for uncertain large-scale systems using delayed feedback. J. Optim. Theory Appl. 129, 391–414 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Cao, Y.Y., Lam, J.: Computation of robust stability bounds for time-delay systems with nonlinear time-varying perturbations. Int. J. Syst. Sci. 31, 359–365 (2000) MATHCrossRefGoogle Scholar
  12. 12.
    Kwon, O.M., Park, J.H.: Matrix inequality approach to novel stability criterion for time delay systems with nonlinear uncertainties. J. Optim. Theory Appl. 126, 643–656 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Park, J.H., Kwon, O.: Novel stability criterion of time delay systems with nonlinear uncertainties. Appl. Math. Lett. 18(6), 683–688 (2005) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zuo, Z., Wang, Y.: New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations. IEE Proc. Control Theory Appl. 143, 623–626 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kwon, O.M., Park, J.H.: Exponential stability of uncertain dynamic systems including state delay. Appl. Math. Lett. 19, 901–907 (2006) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Xu, S., Lam, J., Zhong, M.: New exponential estimates for time-delay systems. IEEE Trans. Autom. Control 51, 1501–1505 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Chen, Y., Xue, A., Lu, R., Zhou, S.: On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Anal. (2007). doi: 10.1016/j.na.2007.01.070 Google Scholar
  18. 18.
    Kharitonov, V.L., Niculescu, S.-I.: On the stability of linear systems with uncertain delay. IEEE Trans. Autom. Control 48, 127–132 (2003) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Michiels, W., Assche, V.V., Niculescu, S.-I.: Stabilization of time-delay systems with a controlled time-varying delay and applications. IEEE Trans. Autom. Control 50, 493–504 (2005) CrossRefGoogle Scholar
  20. 20.
    He, Y., Wang, Q.-G., Lin, C.: An improved H filter design for systems with time-varying interval delay. IEEE Trans. Circuits Syst. II: Express Briefs 53, 1235–1239 (2006) CrossRefGoogle Scholar
  21. 21.
    Yue, D., Peng, C., Tang, G.Y.: Guaranteed cost control of linear systems over networks with state and input quantisations. IEE Proc. Control Theory Appl. 153, 658–664 (2006) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) MATHGoogle Scholar
  23. 23.
    Gahinet, P., Nemirovskii, A., Laub, A., Chilali, M.: LMI Control Toolbox. MathWorks, Natick (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Electrical & Computer EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea

Personalised recommendations