Advertisement

Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions

  • P. Q. Khanh
  • N. D. Tuan
Article

Abstract

We propose two kinds of variational sets of any order for multivalued mappings and show that they are advantageous over many known generalized derivatives in the use for establishing optimality conditions. Applying these sets, we prove both necessary and sufficient optimality conditions of any order for efficiency and weak efficiency in a unified way. Many corollaries and examples are provided to show that our results include many recent existing ones. The imposed assumptions are very relaxed and the proofs are rather short in comparison with those of recent results in the literature.

Keywords

Variational sets Multivalued mappings Nonsmooth vector optimization Efficiency Weak efficiency Optimality conditions Variational analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000) Google Scholar
  2. 2.
    Mordukhovich, B.S.: Basic Theory. Variational Analysis and Generalized Differentiation, vol. I. Springer, Berlin (2006) Google Scholar
  3. 3.
    Mordukhovich, B.S.: Applications. Variational analysis and generalized differentiation, vol. II. Springer, Berlin (2006) Google Scholar
  4. 4.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) MATHGoogle Scholar
  5. 5.
    Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Penot, J.-P.: Are generalized derivatives useful for generalized convex function? In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, vol. 27, pp. 3–59. Kluwer Academic, Dordrecht (1998) Google Scholar
  7. 7.
    Dubovitskii, A.J., Milyutin, A.A.: Extremal problems with constraints. USSR Comp. Math. Math. Phys. 5, 395–453 (1965). (In Russian) CrossRefGoogle Scholar
  8. 8.
    Jiménez, B., Novo, V.: Second-order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, 299–317 (2003) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63, 87–106 (2006) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäser, Boston (1990) MATHGoogle Scholar
  11. 11.
    Penot, J.-P.: Recent advances on second-order optimality conditions. Optimization 481, 357–380 (2000) MathSciNetGoogle Scholar
  12. 12.
    Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46, 193–211 (1997) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jahn, J., Khan, A.A., Zeilinger, P.: Second-order optimality conditions in set optimization. J. Optim. Theory Appl. 125, 331–347 (2005) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, S.J., Chen, C.R.: Higher-order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 323, 1184–1200 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chen, Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48, 187–200 (1998) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Corley, W.: Optimality conditions for maximization of set-valued functions. J. Optim. Theory Appl. 58, 1–10 (1988) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Taa, A.: Set-valued derivatives of multifunctions and optimality conditions. Numer. Funct. Anal. Optim. 19, 121–140 (1998) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jahn, J., Khan, A.A.: Generalized contingent epiderivatives in setvalued optimization: optimality conditions. Numer. Funct. Anal. Optim. 23, 807–831 (2002) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions for constrained set-valued optimization. Pac. J. Optim. 2, 225–239 (2006) MATHMathSciNetGoogle Scholar
  20. 20.
    Luc, D.T.: Vector Optimization Theory. Springer, Berlin (1989) Google Scholar
  21. 21.
    Jiménez, B., Novo, V.: Optimality conditions in differentiable vector optimization via second-order tangent sets. Appl. Math. Optim. 49, 123–144 (2004) MATHMathSciNetGoogle Scholar
  22. 22.
    Shi, D.S.: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70, 385–395 (1991) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Taa, A.: Necessary and sufficient conditions for multiobjective optimization problems. Optimization 36, 97–104 (1996) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Studniarski, M.: Higher-order necessary optimality conditions in terms of Neustadt derivatives. Nonlinear Anal. 47, 363–373 (2001) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsInternational University of Hochiminh CityHochiminh CityVietnam
  2. 2.Department of MathematicsUniversity of Natural Sciences of Hochiminh CityHochiminh CityVietnam

Personalised recommendations