Journal of Optimization Theory and Applications

, Volume 138, Issue 2, pp 207–220 | Cite as

On Polyhedral Projection and Parametric Programming

  • C. N. Jones
  • E. C. Kerrigan
  • J. M. Maciejowski


This paper brings together two fundamental topics: polyhedral projection and parametric linear programming. First, it is shown that, given a parametric linear program (PLP), a polyhedron exists whose projection provides the solution to the PLP. Second, the converse is tackled and it is shown how to formulate a PLP whose solution is the projection of an appropriately defined polyhedron described as the intersection of a finite number of halfspaces. The input to one operation can be converted to an input of the other operation and the resulting output can be converted back to the desired form in polynomial time—this implies that algorithms for computing projections or methods for solving parametric linear programs can be applied to either problem class.


Parametric programming Polyhedral projection Computational geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanchini, F.: Set invariance in control—a survey. Automatica 35(11), 1747–1768 (1999) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Vidal, R., Schaffert, S., Lygeros, J., Sastry, S.: Controlled invariance of discrete time systems. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 1790, pp. 437–450. Springer, Berlin (2000) CrossRefGoogle Scholar
  3. 3.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995) MATHGoogle Scholar
  4. 4.
    Borrelli, F., Bemporad, A., Morari, M.: A geometric algorithm for multi-parametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gal, T.: Postoptimal Analyses, Parametric Programming and Related Topics, 2nd edn. de Gruyter, Berlin (1995) Google Scholar
  7. 7.
    Schechter, M.: Polyhedral functions and multiparametric linear programming. J. Optim. Theory Appl. 53(2), 269–280 (1987) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baotić, M.: An efficient algorithm for multi-parametric quadratic programming. Technical report, ETH Zürich, Institut für Automatik, Physikstrasse 3, CH-8092, Switzerland (2002) Google Scholar
  9. 9.
    Grieder, P., Borrelli, F., Torrisi, F., Morari, M.: Computation of the constrained infinite time linear quadratic regulator. Automatica 40, 701–708 (2004) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic programming and explicit MPC solutions. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA (2001) Google Scholar
  11. 11.
    Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Lexicographic perturbation for multiparametric linear programming with applications to control. Automatica 43(10), 1608–1816 (2007) CrossRefGoogle Scholar
  12. 12.
    Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Projecting clp(ℛ) constraints. New Gener. Comput. 11(3,4), 449–469 (1993) MATHCrossRefGoogle Scholar
  13. 13.
    Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., Merlet, J.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Robot. Res. 16(1), 11–35 (1997) CrossRefGoogle Scholar
  14. 14.
    Černikov, S.N.: Contraction of finite systems of linear inequalities. Dokl. Akad. Nauk SSSR 152(5), 1075–1078 (1963) (in Russian). (English translation in Soc. Math. Dokl. 4(5), 1520–1524 (1963)) MathSciNetGoogle Scholar
  15. 15.
    Balas, E., Pulleybank, W.R.: The perfectly matchable subgraph polytope of a bipartite graph. Networks 13, 495–516 (1983) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) Combinatorics and Computer Science. Lecture Notes in Computer Science, vol. 1120, pp. 91–111. Springer, Berlin (1996). Postscript file available from Google Scholar
  17. 17.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65, 21–46 (1996) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Amenta, N., Ziegler, G.M.: Shadows and slices of polytopes. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 10–19. ACM Press, New York (1996) Google Scholar
  20. 20.
    Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. Technical Report CUED/F-INFENG/TR. 463, Department of Engineering, University of Cambridge, 2004.
  21. 21.
    Klee, V., Kleinschmidt, P.: Geometry of the Gass-Saaty parametric cost LP algorithm. Discrete Comput. Geom. 5, 13–26 (1990) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Murty, K.G.: Linear Programming. Wiley, New York (1983) MATHGoogle Scholar
  23. 23.
    Tyrrell Rockafellar, R., Wets, R.J.-B.: Variational Analysis. A series of Comprehensive Studies in Mathematics, vol. 317. Springer, Berlin (1998) MATHGoogle Scholar
  24. 24.
    Borrelli, F.: Constrained Optimal Control Of Linear And Hybrid Systems. Lecture Notes in Control and Information Sciences, vol. 290. Springer, Berlin (2003) MATHGoogle Scholar
  25. 25.
    Spjøtvold, J., Tøndel, P., Johansen, T.A.: A method for obtaining continuous solutions to multiparametric linear programs. In: Proceedings of the 16th IFAC World Congress, Prague (2005) Google Scholar
  26. 26.
    Jones, C.N.: Polyhedral Tools for Control. PhD thesis, University of Cambridge, July 2005 Google Scholar
  27. 27.
    Cheng, M.C.: General criteria for redundant and nonredundant linear inequalities. J. Optim. Theory Appl. 53(1), 37–42 (1987) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Padberg, M.: Linear Optimization and Extensions. Algorithms and Combinatorics. Springer, Berlin (1999) MATHGoogle Scholar
  29. 29.
    Bemporad, A., Borrelli, F., Morari, M.: Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9), 1600–1606 (2003) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. N. Jones
    • 1
  • E. C. Kerrigan
    • 2
  • J. M. Maciejowski
    • 3
  1. 1.Automatic Control LaboratoryETH ZurichZurichSwitzerland
  2. 2.Department of Aeronautics and Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  3. 3.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations