Proximal-Like Algorithm Using the Quasi D-Function for Convex Second-Order Cone Programming

  • S. H. Pan
  • J. S. Chen


In this paper, we present a measure of distance in a second-order cone based on a class of continuously differentiable strictly convex functions on ℝ++. Since the distance function has some favorable properties similar to those of the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]), we refer to it as a quasi D-function. Then, a proximal-like algorithm using the quasi D-function is proposed and applied to the second-cone programming problem, which is to minimize a closed proper convex function with general second-order cone constraints. Like the proximal point algorithm using the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]; Chen and Teboulle in SIAM J. Optim. 3:538–543 [1993]), under some mild assumptions we establish the global convergence of the algorithm expressed in terms of function values; we show that the sequence generated by the proposed algorithm is bounded and that every accumulation point is a solution to the considered problem.


Bregman functions Quasi D-functions Proximal-like methods Convex second-order cone programming 


  1. 1.
    Censor, Y., Zenios, S.A.: The proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73, 451–464 (1992) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kuo, Y.J., Mittelmann, H.D.: Interior point methods for second-order cone programming and OR applications. Comput. Optim. Appl. 28, 255–285 (2004) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Application of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, J.S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. 101, 95–117 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Martinet, B.: Perturbation des methodes d’optimisation. RAIRO Anal. Numer. 12, 153–171 (1978) MATHMathSciNetGoogle Scholar
  9. 9.
    Moreau, J.J.: Promimité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965) MATHMathSciNetGoogle Scholar
  10. 10.
    Rockafellar, R.T.: Augmented Lagrangians and applications of proximial point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976) MATHMathSciNetGoogle Scholar
  11. 11.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Eggermont, P.P.B.: Multiplicative iterative algorithms for convex programming. Linear Algebra Appl. 130, 25–42 (1990) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. Oper. Res. 18, 202–226 (1993) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992) MATHMathSciNetGoogle Scholar
  15. 15.
    Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967) CrossRefGoogle Scholar
  16. 16.
    Censor, Y., Lent, A.: An interval row action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    DePierro, A., Iusem, A.: A relaxed version of Bregman’s method for convex programming. J. Optim. Theory Appl. 5, 421–440 (1986) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kiwiel, K.C.: Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35, 1142–1168 (1997) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Silva, P.J.S., Eckstein, J.: Double-regularization proximal methods, with complementarity applications. Comput. Optim. Appl. 33, 115–156 (2006) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Faraut, U., Korányi, A.: Analysis on Symmetrc Cones. Oxford Mathematical Monographs. Oxford University Press, Oxford (1994) Google Scholar
  21. 21.
    Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Iusem, A.N.: Some properties of generalized proximal point methods for quadratic and linear programming. J. Optim. Theory Appl. 85, 593–612 (1995) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Mathematical SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.Department of MathematicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations