Journal of Optimization Theory and Applications

, Volume 138, Issue 2, pp 311–328 | Cite as

An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems

  • E. Polak
  • R. S. Womersley
  • H. X. Yin


We present a new active-set strategy which can be used in conjunction with exponential (entropic) smoothing for solving large-scale minimax problems arising from the discretization of semi-infinite minimax problems. The main effect of the active-set strategy is to dramatically reduce the number of gradient calculations needed in the optimization. Discretization of multidimensional domains gives rise to minimax problems with thousands of component functions. We present an application to minimizing the sum of squares of the Lagrange polynomials to find good points for polynomial interpolation on the unit sphere in ℝ3. Our numerical results show that the active-set strategy results in a modified Armijo gradient or Gauss-Newton like methods requiring less than a quarter of the gradients, as compared to the use of these methods without our active-set strategy. Finally, we show how this strategy can be incorporated in an algorithm for solving semi-infinite minimax problems.


Minimax problems Log-sum-exponential smoothing Active set strategies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Outendijk, G.Z.: Methods of Feasible Directions. Elsevier, Amsterdam (1960) Google Scholar
  2. 2.
    Polak, E.: Computational Methods in Optimization: A Unified Approach. Academic, New York (1971) Google Scholar
  3. 3.
    Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000) Google Scholar
  4. 4.
    Bertsekas, D.P.: Nonlinear Programming. Athena Press, Cambridge (1995) MATHGoogle Scholar
  5. 5.
    Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York (1997) MATHGoogle Scholar
  6. 6.
    Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite min-max problems. J. Optim. Theory Appl. 119(3), 459–484 (2003) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kort, B.W., Bertsekas, D.P.: A new penalty function for constrained minimization. In: Proceedings 1972 IEEE Conference on Decision and Control, New Orleans, December 1972 Google Scholar
  8. 8.
    Bertsekas, D.P.: Nondifferentiable optimization via approximation. In: Balinski, M.L., Wolfe, P. (eds.) Mathematical Programming Study 3, Nondifferentiable Optimization, pp. 1–15. North-Holland, Amsterdam (1975) Google Scholar
  9. 9.
    Bertsekas, D.P.: Approximation procedures based on the method of multipliers. J. Optim. Theory Appl. 23, 487–510 (1977) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, X.S.: An entropy-based aggregate method for minimax optimization. Eng. Optim. 14, 277–285 (1997) Google Scholar
  11. 11.
    Peng, J., Lin, Z.: A non-interior continuation method for generalized linear complementarity problems. Math. Program. 86, 533–563 (1999) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279 (2001) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, X.S.: An aggregate function method for nonlinear programming. Sci. China (A) 34, 1467–1473 (1991) MATHGoogle Scholar
  14. 14.
    Bertsekas, D.P.: Minmax methods based on approximation. In: Proceeding of the 1976 Johns Hopkins Conference on Information Sciences and Systems, Baltimore, 1976 Google Scholar
  15. 15.
    Bertsekas, D.P.: Lagrange Multiplier Methods in Constrained Optimization. Academic, New York (1982), Chap. 3; republished by Athena Scientific, Cambridge (1996) Google Scholar
  16. 16.
    Womersley, R.S., Sloan, I.H.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Electrical Engineering & Computer SciencesUniversity of CaliforniaBerkeleyUSA
  2. 2.School of MathematicsUniversity of New South WalesSydneyAustralia
  3. 3.Department of Mathematics, Graduate SchoolChinese Academy of SciencesBeijingPeoples Republic of China

Personalised recommendations