Advertisement

Duality for Set-Valued Multiobjective Optimization Problems. Part 2: Optimal Control

  • A. Y. Azimov
Article
  • 100 Downloads

Abstract

The present paper is a continuation of a paper by Azimov (J. Optim. Theory Appl. 2007, accepted), where we derived duality relations for some general multiobjective optimization problems which include convex programming and optimal control problems. As a consequence, we established duality results for multiobjective convex programming problems. In the present paper (Part 2), based on Theorem 3.2 of Azimov (J. Optim. Theory Appl. 2007, accepted), we establish duality results for several classes of multiobjective optimal control problems.

Keywords

Duality in multiobjective optimization Duality for multiobjective optimal control problems Convexity of the set of vector integrals Minimax theorems Multiobjective quasilinear optimal control problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azimov, A.Y., Duality for set-valued multiobjective optimization problems, Part 1: Mathematical programming, J. Optim. Theory Appl. (2007, accepted) Google Scholar
  2. 2.
    Bhatia, D., Kumar, P.: Multiobjective control problem with generalized invexity. J. Math. Anal. Appl. 189, 676–692 (1995) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Mishra, S.K., Mukherjee, R.N.: Multiobjective control problem with V-invexity. J. Math. Anal. Appl. 235, 1–12 (1999) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256, 446–461 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, X.-H.: Duality for a class of multiobjective control problems. J. Math. Anal. Appl. 267, 377–394 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gulati, T.R., Husain, I., Ahmed, A.: Optimality conditions and duality for multiobjective control problems. J. Appl. Anal. 11, 225–245 (2005) MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Zalmai, G.J.: Proper efficiency and duality for a class of constrained multiobjective fractional optimal control problems containing arbitrary norms. J. Optim. Theory Appl. 90, 435–456 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zalmai, G.J.: Semiparametric proper efficiency principles and duality models for constrained multiobjective fractional optimal control problems containing arbitrary norms. J. Math. Anal. Appl. 278, 34–64 (2003) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mond, B., Smart, I.: Duality and sufficiency in control problems with invexity. J. Math. Anal. Appl. 136, 325–333 (1988) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Azimov, A.Y.: Duality theorems for multiobjective problems. Sov. Math. Dokl. 31, 1–5 (1985) MATHGoogle Scholar
  11. 11.
    Azimov, A.Y.: Duality of multiobjective problems. Math. USSR-Sb. 59, 515–531 (1988) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Azimov, A.Y.: Duality for multiple criteria optimal control problems. Optimization 19, 197–214 (1988) (in Russian) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Alexeyev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control (in Russian). Nauka, Moscow (1979) (English translation Plenum, New York, NY, 1987) Google Scholar
  14. 14.
    Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42–47 (1953) MATHCrossRefGoogle Scholar
  15. 15.
    Edwards, R.E.: Functional Analysis. Dover, New York (1995) Google Scholar
  16. 16.
    Krasovski, N.N.: The Theory of Motion Control. Nauka, Moscow (1968) (in Russian) Google Scholar
  17. 17.
    Ekeland, I., Temam, R.: Analyse Convexe et Problémes Variationnels. Dunod and Gauthier-Villars, Paris (1974). English translation by North-Holland, Amsterdam, Holland (1976) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of StatisticsYildiz Technical UniversityİstanbulTurkey

Personalised recommendations