Journal of Optimization Theory and Applications

, Volume 136, Issue 2, pp 275–295 | Cite as

Adjustable Robust Optimization Models for a Nonlinear Two-Period System

  • A. Takeda
  • S. Taguchi
  • R. H. Tütüncü


We study two-period nonlinear optimization problems whose parameters are uncertain. We assume that uncertain parameters are revealed in stages and model them using the adjustable robust optimization approach. For problems with polytopic uncertainty, we show that quasiconvexity of the optimal value function of certain subproblems is sufficient for the reducibility of the resulting robust optimization problem to a single-level deterministic problem. We relate this sufficient condition to the cone-quasiconvexity of the feasible set mapping for adjustable variables and present several examples and applications satisfying these conditions.


Robust optimization Two-period nonlinear optimization problem Quasiconvex set valued map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998) MATHMathSciNetGoogle Scholar
  2. 2.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Tal, A., Goryashko, A., Guslitser, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guslitser, E.: Uncertainty-immunized solutions in linear programming. MS Thesis, Israel Institute of Technology (2002) Google Scholar
  5. 5.
    Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic, Dordrecht (1998) MATHGoogle Scholar
  6. 6.
    Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57(3), 427–435 (2003) MATHMathSciNetGoogle Scholar
  7. 7.
    Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9(2), 97–101 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tanaka, T.: Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions. J. Optim. Theory Appl. 81(2), 355–377 (1994) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schaible, S.: Fractional programming. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, pp. 495–608. Kluwer Academic, Dordrecht (1995) Google Scholar
  11. 11.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  12. 12.
    Pinar, M.Ç, Tütüncü, R.H.: Robust profit opportunities in risky financial portfolios. Oper. Res. Lett. 33(4), 331–340 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Freund, R.W., Jarre, F.: An interior-point method for multifractional programs with convex constraints. J. Optim. Theory Appl. 85(1), 125–161 (1995) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nemirovski, A.: A long-step method of analytic centers for fractional problems. Math. Program. 77(2), 191–224 (1997) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan
  2. 2.Digital Media Network CompanyToshiba CorporationTokyoJapan
  3. 3.Quantitative Investment StrategiesGoldman Sachs Asset ManagementNew YorkUSA

Personalised recommendations