Advertisement

Journal of Optimization Theory and Applications

, Volume 134, Issue 3, pp 533–547 | Cite as

Optimization in Control and Learning in Coupled Map Lattice Systems

  • S. P. Nair
  • P. M. Pardalos
  • V. A. Yatsenko
Article

Abstract

In this paper, we analyze various control algorithms that have been proposed for controlling spatiotemporal chaos in a globally coupled map lattice (CML) system. We reformulate the choice of feedback parameters in such systems as a constrained optimization problem and provide numerical and experimental results on the choice of optimal parameters for controlling the mean global Lyapunov exponent of a lattice. Finally, we propose a scheme to use this optimization technique to solve a learning problem in which such a CML system can be used to emulate the dynamics of an epileptic brain.

Keywords

Optimization Control Lyapunov exponents Brain dynamics Seizure Lattice systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J.: Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures. Brain Topogr. 2, 187–201 (1990) CrossRefGoogle Scholar
  2. 2.
    Iasemidis, L.D., Sackellares, J.C.: The temporal evolution of the largest lyapunov exponent on the human epileptic cortex. In: Duke, D.W., Prichard, W.S. (eds.) Measuring Chaos in the Human Brain, pp. 49–82. World Scientific, Singapore (1991) Google Scholar
  3. 3.
    Iasemidis, L.D., Sackellares, J.C.: Chaos theory and epilepsy. Neuroscientist 2, 118–126 (1996) CrossRefGoogle Scholar
  4. 4.
    Iasemidis, L.D., Shiau, D.S., Sackellares, J.C., Pardalos, P.M., Prasad, A.: Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomed. Eng. 51, 493–506 (2004) CrossRefGoogle Scholar
  5. 5.
    Nair, S.P., Shiau, D.S., Norman, W.M., Shenk, D., Suharitdamrong, W., Iasemidis, L.D., Pardalos, P.M., Sackellares, J.C., Carney, P.R.: Dynamical changes in the rat chronic limbic epilepsy model. Epilepsia 45–S7, 211–212 (2004) Google Scholar
  6. 6.
    Ramaswamy, R., Sinha, S., Gupte, N.: Targeting chaos through adaptive control. Phys. Rev. E 57, R2507–R2510 (1998) CrossRefGoogle Scholar
  7. 7.
    Wang, X.F., Chen, G., Yu, X.: Anticontrol of chaos in continuous-time systems via time-delay feedback. Chaos 10(4), 771–779 (2000) MATHCrossRefGoogle Scholar
  8. 8.
    Morgul, O.: Model based anticontrol of discrete-time systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 1895–1896 (2003) Google Scholar
  9. 9.
    Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988) MATHGoogle Scholar
  10. 10.
    Iasemidis, L.D., Shiau, D.S., Pardalos, P.M., Sackellares, J.C.: Transition to epileptic seizures: An optimization approach into its dynamics. In: Du, D.Z., Pardalos, P.M., Wang, J. (eds.) Discrete Problems with Medical Applications. DIMACS Series, vol. 55, pp. 55–74. Am. Math. Soc., Providence (2000) Google Scholar
  11. 11.
    Yatsenko, V.A., Pardalos, P.M., Sackellares, J.C., Carney, P.R., Prokopyev, O.: Geometric models, fiber bundles, and biomedical applications. In: Proceedings of the 5th International Conference on Symmetry in Nonlinear Mathematical Physics, Institute of Mathematics, vol. 3, pp. 1518–1525 (2004) Google Scholar
  12. 12.
    Pardalos, P.M., Chaovalitwongse, W., Iasemidis, L.D., Sackellares, J.C., Shiau, D.S., Carney, P.R., Prokopyev, O., Yatsenko, V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101, 365–385 (2004) MATHCrossRefGoogle Scholar
  13. 13.
    Iasemidis, L.D., Pardalos, P.M., Shiau, D.S., Chaovalitwongse, W., Narayanan, M., Kumar, S., Carney, P.R., Sackellares, J.C.: Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optim. Methods Softw. 8, 81–104 (2003) CrossRefGoogle Scholar
  14. 14.
    Kaneko, K.: Periodic-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and aptial intermittency in coupled logistic lattice. Prog. Theor. Phys. 72, 480–486 (1984) MATHCrossRefGoogle Scholar
  15. 15.
    Kaneko, K.: Overview of coupled map lattices. Chaos 2, 279–282 (1992) MATHCrossRefGoogle Scholar
  16. 16.
    Parekh, N., Kumar, R., Kulkarni, D.: Synchronization and control of spatiotemporal chaos using time-series data from local regions. Chaos 8, 300–305 (1998) MATHCrossRefGoogle Scholar
  17. 17.
    Shibata, H.: KS entropy and mean Lyapunov exponent for coupled map lattices. Physica A 292, 182–192 (2001) MATHCrossRefGoogle Scholar
  18. 18.
    Ding, M., Yang, W.: Stability of synchronous chaos and on–off intermittency in coupled map lattices. Phys. Rev. E 56, 4009–4016 (1997) Google Scholar
  19. 19.
    Amritkar, R.E., Gade, P.M., Gangal, A.D., Nandkumaran, V.M.: Stability of periodic orbits of coupled-map lattices. Phys. Rev. A 44, R3407–R3410 (1991) CrossRefGoogle Scholar
  20. 20.
    Pardalos, P.M., Yatsenko, V.A.: Optimization approach to the estimation and control of Lyapunov exponents. J. Optim. Theory Appl. 128, 29–48 (2006) MATHCrossRefGoogle Scholar
  21. 21.
    Pineda, M., Cosenza, M.G.: Synchronization in driven versus autonomous coupled chaotic maps. Phys. Rev. E 71, (2005) Google Scholar
  22. 22.
    Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297 (1977) MATHCrossRefGoogle Scholar
  23. 23.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630. Springer, Berlin (1978) CrossRefGoogle Scholar
  24. 24.
    Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14, 343–346 (2004) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Space PlasmaInstitute of Space ResearchKievUkraine

Personalised recommendations