Advertisement

Journal of Optimization Theory and Applications

, Volume 134, Issue 3, pp 385–398 | Cite as

Stability Results for Efficient Solutions of Vector Optimization Problems

  • S. W. Xiang
  • W. S. Yin
Article

Abstract

Using the additive weight method of vector optimization problems and the method of essential solutions, we study some continuity properties of the mapping which associates the set of efficient solutions S(f) to the objective function f. To understand such properties, the key point is to consider the stability of additive weight solutions and the relationship between efficient solutions and additive weight solutions.

Keywords

Additive weight method Vector optimization Essential solutions Efficient solutions Additive weight solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, H.P., Morin, T.L.: The vector maximization problem: proper efficiency and stability. SIAM J. Appl. Math. 32, 64–72 (1977) MATHCrossRefGoogle Scholar
  2. 2.
    Huang, X.X.: Stability in vector-valued and set-valued optimization. Math. Methods Oper. Res. 52, 185–193 (2000) MATHCrossRefGoogle Scholar
  3. 3.
    Lucchetti, R.E., Miglierina, E.: Stability for convex vector optimization problems. Optimization 53, 517–528 (2004) MATHCrossRefGoogle Scholar
  4. 4.
    Miglierina, E., Molho, E.: Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114, 657–670 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Miglierina, E., Molho, E.: Convergence of the minimal sets in convex vector optimization. SIAM J. Optim. 15, 513–526 (2005) MATHCrossRefGoogle Scholar
  6. 6.
    Miglierina, E., Molho, E., Rocca, M.: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126, 391–409 (2005) MATHCrossRefGoogle Scholar
  7. 7.
    Kenderov, P.S.: Most of the optimization problems have unique solution. In: Brosowski, B., Deutsch, F. (eds.) Proceedings of the Oberwolfach Conference on Parametric Optimization, pp. 203–216. Birkhäuser, Basel (1984) Google Scholar
  8. 8.
    Kohlberg, E., Mertens, J.F.: On the strategic stability of equilibria. Econometrica 54, 1003–1073 (1986) MATHCrossRefGoogle Scholar
  9. 9.
    Xiang, S.W., Xiang, S.H.: Generic stability on weight factor in multiobjective optimization problems. PanAm. Math. J. 7, 79–84 (1997) MATHGoogle Scholar
  10. 10.
    Xiang, S.W., Zhou, Y.H.: On essential sets and essential components of efficient solutions for vector optimization problems. J. Math. Anal. Appl. 315, 317–326 (2006) MATHCrossRefGoogle Scholar
  11. 11.
    Yu, J.: Essential weak efficient solution in multiobjective optimization problems. J. Math. Anal. Appl. 166, 230–235 (1992) MATHCrossRefGoogle Scholar
  12. 12.
    Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979) MATHCrossRefGoogle Scholar
  13. 13.
    Borwein, J.: Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977) MATHCrossRefGoogle Scholar
  14. 14.
    Dauer, J.P., Gallagher, R.J.: Positive proper efficient points and related cone results in vector optimization theory. SIAM J. Control Optim. 28, 158–172 (1990) MATHCrossRefGoogle Scholar
  15. 15.
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968) MATHCrossRefGoogle Scholar
  16. 16.
    Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994) MATHCrossRefGoogle Scholar
  17. 17.
    Fort Jr., M.K.: Points of Continuity of Semicontinuous Functions, vol. 2, pp. 100–102. Publicationes Mathematicae, Debrecen (1951) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsGuizhou UniversityGuizhouChina

Personalised recommendations