Journal of Optimization Theory and Applications

, Volume 128, Issue 2, pp 333–353 | Cite as

Business–Cycle Models and the Dangers of Linearizing

  • O. Kozlovski
  • P. Pintus
  • S. van Strien
  • R. de Vilder


This paper studies the consequences of linearizing nonlinear business–cycle models near their interior steady state. It is shown that dynamic objects, created for example in a Bogdanov-Takens bifurcation, may be lost in the linearization procedure. Sufficient conditions are provided ensuring the absence of various dynamic features in the nonlinear version of the model.


Nonlinear dynamical systems linearization Bogdanov-Takens bifurcation chaos 


  1. 1.
    KYDLAND, F. E., and PRESCOTT, E. C., Time to Build and Aggregate Fluctuations, Econometrica, Vol. 50, pp. 1345–1370, 1982.MATHCrossRefGoogle Scholar
  2. 2.
    KING, R. G., PLOSSER, C. I., and REBELO, S. T., Production, Growth, and Business Cycles, Journal of Monetary Economics, Vol. 21, pp. 195–232, 1998.CrossRefGoogle Scholar
  3. 3.
    BENHABIB, J., and DAY, R., A Charatcrization of Erratic Dynamics in the Overlapping Generations Model, Journal of Economic Dynamics and Control, Vol. 4, pp. 37–55, 1982.CrossRefMathSciNetGoogle Scholar
  4. 4.
    GRANDMONT, J. M., On Endogenous Business Cycles, Econometrica, Vol. 53, pp. 995–1045, 1985.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    REICHLIN, P., Equilibrium Cycles in an Overlapping Generations Model with Production, Journal of Economic Theory, Vol. 40, pp. 89–102, 1986.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    WOODFORD, M., Stationary Sunspot Equilibria in a Finance Constrained Economy, Journal of Economic Theory, Vol. 40, pp. 128–137, 1986.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    DE VILDER, R. G., Complicated Endogenous Business Cycles under Gross Substitutability, Journal of Economic Theory, Vol. 71, pp. 416–442, 1995.CrossRefGoogle Scholar
  8. 8.
    GRANDMONT, J. M., PINTUS, P., and DE VILDER, R. G., Capital-Labor Substitution and Competitive Nonlinear Endogenous Business Cycles, Journal of Economic Theory, Vol. 80, pp. 14–59, 1998.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    AZARIADIS, C., Self-Fulfilling Prophecies, Journal of Economic Theory, Vol. 25, pp. 380–396, 1981.CrossRefMATHGoogle Scholar
  10. 10.
    CASS, D., and SHELL, K., Do Sunspots Matter?, Journal of Political Economy, Vol. 91, pp. 193–227, 1983.CrossRefGoogle Scholar
  11. 11.
    AZARIADIS, C., and GUESNERIE, R., Sunspots and Cycles, Review of Economic Studies, Vol. 53, pp. 725–37, 1986.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    GUESNERIE, R., Stationary Sunspot Equilibria in an N-Commodity World, Journal of Economic Theory, Vol. 40, pp. 103–28, 1986.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    FARMER, R. E. A., and GUO, J. T., Real Business Cycles and the Animal Spirit Hypothesis, Journal of Economic Theory, Vol. 63, pp. 42–72, 1994.CrossRefMATHGoogle Scholar
  14. 14.
    KING, R. G., and REBELO, S., Resuscitating Real Business Cycles, Handbook of Macroeconomics, Edited by J. Taylor and M. Woodford, Elsevier Science, Amsterdam, Holland, Volume 1C, Chapter 14, 1999.Google Scholar
  15. 15.
    BENHABIB, J., and FARMER, R. E. A., Indeterminacy and Sunspots in Macroeconomics, Handbook of Macroeconomics, Edited by J. Taylor and M. Woodford, Elsevier Science, Amsterdam, Holland, Volume 1A, Chapter 6, 1999.Google Scholar
  16. 16.
    PINTUS, P. SANDS, D., and DE VILDER, R., On the Transition from Local Regular to Global Irregular Fluctuations, Journal of Economic Dynamics and Control, Vol. 24, pp. 247–272, 2000.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    KUZNETSOV, I., Elements of Applied Bifurcation Theory, Springer Verlag, Berlin, Germany, 1995.MATHGoogle Scholar
  18. 18.
    PALIS, J., and TAKENS, F., Hyperbolocity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, Cambridge, UK, 1993.Google Scholar
  19. 19.
    BROCK, W. A., and HOMMES, C. H., A Rational Route to Randomness, Econometrica, Vol. 60, pp. 1059–1095, 1997.CrossRefMathSciNetGoogle Scholar
  20. 20.
    CAZZAVILLAN, G., and PINTUS, P., Robustness of Multiple Equilibria in OLG Economies, Review of Economic Dynamics, Vol. 7, pp. 456–75, 2004.CrossRefGoogle Scholar
  21. 21.
    CAZZAVILLAN, G., LLOYD-BRAGA, T., and PINTUS, P., Multiple Steady States and Endogenous Fluctuations with Increasing Returns to Scale in Production, Journal of Economic Theory, Vol. 80, pp. 60–107, 1998.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    TUINSTRA, J., Price Dynamics in Equilibrium Models: The Search for Equilibrium and the Emergence of Endogenous Fluctuations, Kluwer Academic Publishers, Dodrecht, Netherlands, 2000.Google Scholar
  23. 23.
    GUCKENHEIMER, J., and HOLMES, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, Berlin, Germany, 1983.Google Scholar
  24. 24.
    KOZLOVSKI, O., VAN STRIEN, S. J., and DE VILDER, R. G., The Two-Fixed Point Lemma, Warwick University, Preprint 28/1999, 1999.Google Scholar
  25. 25.
    HIRSCH, M. W., Periodic Orbits and Homoclinic Loops for Surface Hom{æmorphisms, Michigan Mathematical Journal, Vol. 47, pp. 395-406, 2000.Google Scholar
  26. 26.
    KATOK, A., and HASSELBLATT, B., Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995.MATHGoogle Scholar
  27. 27.
    HIRSCH, M. W., Differential Topology, Graduate Texts in Mathematics, Springer Verlag, Berlin, Germany, Vol. 33, 1976.Google Scholar
  28. 28.
    KOZLOVSKY, O., PINTUS, P., VAN STRIEN, S., and DE VILDER, R., Business-Cycle Models and the Dangers of Linearizing, GREQAM Working Paper 2005-09, 2005; see also papers/2005/2005-09.pdf, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. Kozlovski
    • 1
  • P. Pintus
    • 2
  • S. van Strien
    • 1
  • R. de Vilder
    • 3
    • 4
  1. 1.Department of MathematicsWarwick UniversityWarwickUK
  2. 2.GREQAM and Department of EconomicsUniversité de la Mediterranée Aix-Marseille IIMarseilleFrance
  3. 3.DELTA-CNRS-EHESS-ENSParisFrance
  4. 4.Department of MathematicsUniversity of AmsterdamAmsterdamNetherlands

Personalised recommendations