Journal of Optimization Theory and Applications

, Volume 127, Issue 3, pp 579–586 | Cite as

Dynamic Programming and Diagnostic Classification

  • C. Itiki


In this paper, the sequential determination of the Moore-Penrose generalized inverse matrix by dynamic programming is applied to the diagnostic classification of electromyography signals. The obtained results are comparable to those in the literature. Moreover, this recursive scheme has the advantage of allowing the inclusion of new diagnostic results in the learning process, as more and more patients are included in the training of the associative memory.


Generalized inverses dynamic programming associative memories electromyography signals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Israel, A., Greville, T.N.E. 2003Generalized Inverses: Theory and Applications2Canadian Mathematical SocietyOttawa, CanadaGoogle Scholar
  2. 2.
    Udwadia, F.E., Kalaba, R.E. 1996Analytical Dynamics: A New ApproachCambridge University PressCambridge, UKGoogle Scholar
  3. 3.
    Udwadia, F.E., Kalaba, R.E. 1992A New Perspective on Constrained MotionProceedings of the Royal Society of London, Mathematical Physical and Engineering Sciences439A407410MathSciNetGoogle Scholar
  4. 4.
    Itiki, C., Kalaba, R.E., Udwadia, F.E. 1995Appell’s Equations of Motion and the Generalized Inverse FormAgarwal, R.P. eds. Recent Trends in Optimization Theory and ApplicationsWorld ScientificSingapore, Republic of Singapore123143Google Scholar
  5. 5.
    Kalaba, R.E., Udwadia, F.E., Xu, R., Itiki, C. 1995The Equivalence of Lagrange’s Equations of Motion of the First Kind and the Generalized Inverse FormNonlinear World2519526MathSciNetGoogle Scholar
  6. 6.
    Udwadia, F.E., Kalaba, R.E. 2001Explicit Equations of Motion for Mechanical System with Nonideal ConstraintsJournal of Applied Mechanics, Transactions of the ASME68462467Google Scholar
  7. 7.
    Kalaba, R.E., Udwadia, F.E. 1993Associative Memory Approach to the Identification of Structural and Mechanical SystemsJournal of Optimization Theory and Applications76207223CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kagiwada, H.H., Kalaba, R.E., Timko, S., Ueno, S. 1990Associative Memories for System-Identification: Inverse Problems in Remote SensingMathematical and Computer Modelling14200202CrossRefGoogle Scholar
  9. 9.
    Itiki, C., Kalaba, R., and Natsuyama, H., Estimation of Muscle Parameters of Lower Limb Model, Proceedings of the 4th International Symposium on Artificial Life and Robotics, Oita University, Oita, Japan, Vol. 2, pp. 317– 319, 1999.Google Scholar
  10. 10.
    Kalaba, R.E., Rasakhoo, N. 1986Algorithms for Generalized InversesJournal of Optimization Theory and Applications48427435CrossRefMathSciNetGoogle Scholar
  11. 11.
    Udwadia, F.E., Kalaba, R.E. 1999General Forms for the Recursive Determination of Generalized Inverses: Unified ApproachJournal of Optimization Theory and Applications101509521CrossRefMathSciNetGoogle Scholar
  12. 12.
    Udwadia, F.E., Kalaba, R.E. 2003Sequential Determination of the {1,4}-Inverse of a matrixJournal of Optimization Theory and Applications11717CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kalaba, R.E., Natsuyama, H.H., Ueno, S. 1999The Estimation of Parameters in Time-Dependent Transport Problems: Dynamic Programming and Associative MemoriesComputers and Mathematics with Applications374145MathSciNetGoogle Scholar
  14. 14.
    Fan, Y.Y., Kalaba, R.E. 2003Dynamic Programming and Pseudo-InversesApplied Mathematics and Computation139323342MathSciNetGoogle Scholar
  15. 15.
    Bellman, R.E., Kalaba, R.E. 1965Dynamic Programming and Modern Control TheoryAcademic PressNew York, NYGoogle Scholar
  16. 16.
    Bendat, J.S., Piersol, A.G. 1986Random Data Analysis and Measurement Procedures2John WileyNew York, NYGoogle Scholar
  17. 17.
    Marple, S.L. 1987Digital Spectral Analysis with ApplicationsPrentice HallEnglewood Cliffs, New JerseyGoogle Scholar
  18. 18.
    Shirota, C., Barretto, M.Y., Itiki, C. 2004Classificacao de Sinais Eletromiograficos de Agulha por Memorias Associativas e Modelagem Auto-RegressivaProceedings of the International Federation for Medical and Biological Engineering, SBEB-CORAL-IFMBE, Joao Pessoa5959962Google Scholar
  19. 19.
    Kohonen, T. 1984Self-Organization and Associative MemorySpringer VerlagBerlin, GermanyGoogle Scholar
  20. 20.
    Graybill, F.A. 1983Matrices with Applications in StatisticsWadsworthPacific Grove, CaliforniaGoogle Scholar
  21. 21.
    Inbar, G.F., Noujaim, A.E. 1984On Surface EMG Spectral Characterization and Its Application to Diagnostic ClassificationIEEE Transactions on Biomedical Engineering31597604Google Scholar
  22. 22.
    Abou-Chadi, F.E., Nashar, A., Saad, M. 2001Automatic Analysis and Classification of Surface ElectromyographyFrontiers of Medical and Biological Engineering111329Google Scholar
  23. 23.
    Pattichis, C., Elia, A.G. 1999Autoregressive and Cepstral Analyses of Motor Unit Action PotentialsMedical Engineering and Physics21405419Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. Itiki
    • 1
  1. 1.Department of Telecommunication and Control Engineering, Escola PolitecnicaUniversity of Sao PauloSao PauloBrazil

Personalised recommendations