Journal of Optimization Theory and Applications

, Volume 127, Issue 1, pp 109–127 | Cite as

Turnpike and Optimal Trajectories in Integral Dynamic Models with Endogenous Delay

  • N. Hritonenko
  • Yu. Yatsenko


Nonlinear optimal control of dynamic systems with endogenous time delays is analyzed. Such systems have important applications and are described by Volterra integral equations with unknowns in the integration limits. The paper focuses on the structure and asymptotic behavior of solutions to several optimization problems with endogenous delay. It is shown that, in certain cases, a special delay trajectory exists and attracts the optimal solution. In economics, such behavior corresponds to the turnpike properties of the optimal lifetime of capital in vintage capital models.


Nonlinear optimal control Volterra integral equations endogenous delay vintage capital models optimal capital lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burton, T.A. 1983Volterra Integral and Differential EquationsAcademic PressOrlando, FloridaGoogle Scholar
  2. 2.
    Corduneanu, C. 1991Integral Equations and ApplicationsCambridge University PressCambridge, UKGoogle Scholar
  3. 3.
    Kapur, J. 1988Mathematical ModelingWileyNew York, NYGoogle Scholar
  4. 4.
    Eykhoff, P. 1974System IdentificationWileyNew York, NYGoogle Scholar
  5. 5.
    Soderstrom, T, Stoica, P. 1989System IdentificationPrentice-HallEnglewood Cliffs, New JerseyGoogle Scholar
  6. 6.
    Saaty, T.L., Joyce, M. 1981Thinking with Models: Mathematical Models in the Physical, Biological, and Social SciencesPergamonOxford, UKGoogle Scholar
  7. 7.
    Webb, G.F. 1985Theory of Nonlinear Age-Dependent Population DynamicsDekkerNew York, NYGoogle Scholar
  8. 8.
    Hritonenko, N, Yatsenko, Y. 2003Applied Mathematical Modelling of Engineering ProblemsKluwer Academic PublishersBuston, MassachusettsGoogle Scholar
  9. 9.
    Hritonenko, N, Yatsenko, Y. 1999Mathematical Modeling in Economics, Ecology, and the EnvironmentKluwer Academic PublishersDordrecht, NetherlandsGoogle Scholar
  10. 10.
    Solow, R, Tobin, J, Von Weizsacker, C, Yaari, M. 1966Neoclassical Growth with Fixed Factor ProportionsReview of Economic Studies3379115Google Scholar
  11. 11.
    Malcomson, J.M. 1975Replacement and the Rental Value of Capital Equipment Subject to ObsolescenceJournal of Economic Theory102441CrossRefGoogle Scholar
  12. 12.
    Benhabib, J, Rustichini, A. 1993A Vintage Capital Model of Investment and GrowthBecker, R eds. General Equilibrium, Growth, and Trade, II: The Legacy of Lionel W. McKenzieAcademic PressNew York, NY248301Google Scholar
  13. 13.
    Boucekkine, R, Germain, M, Licandro, O. 1997Replacement Echoes in the Vintage Capital Growth ModelJournal of Economic Theory74333348CrossRefGoogle Scholar
  14. 14.
    Hritonenko, N, Yatsenko, Y. 1996Modeling and Optimization of the Lifetime of TechnologiesKluwer Academic PublishersDordrecht, NetherlandsGoogle Scholar
  15. 15.
    Greenwood, J, Herkowitz, Z, Krusell, P. 1997Long-Run Implications of Investment-Specific Technological ChangeAmerican Economic Review87342362Google Scholar
  16. 16.
    Sakellaris, P. 1997Irreversible Capital and the Stock Market Response to Shocks in ProfitabilityInternational Economic Review38351379Google Scholar
  17. 17.
    Van Hilten, O. 1991The Optimal Lifetime of Capital EquipmentJournal of Economic Theory55449454Google Scholar
  18. 18.
    Hritonenko, N, Yatsenko, Y. 1996Integral-Functional Equations for Optimal Renovation ProblemsOptimization36249261Google Scholar
  19. 19.
    Barnett, S. 1975Introduction to Mathematical Control TheoryOxford University PressNew York, NYGoogle Scholar
  20. 20.
    Ljung, L. 1987System Identification: Theory for the UserPrentice-HallEnglewood Cliffs, New JerseyGoogle Scholar
  21. 21.
    Volterra, V. 1959Theory of Functionals and of Integral and Integral-Differential EquationsDover PublicationsNew York, NYGoogle Scholar
  22. 22.
    Jovanovic, B. 1998Vintage Capital and InequalityReivew of Economic Dynamics1497530CrossRefGoogle Scholar
  23. 23.
    Dejong, D, Ingram, B, Whiteman, C. 2000Keynesian Impulses versus Solow Residuals: Identifying Sources of Business FluctuationsJournal of Applied Econometrics15311329CrossRefGoogle Scholar
  24. 24.
    Brokate, M. 1985Pontryagin’s Principle for Control Problems in Age-Dependent Population DynamicsJournal of Mathematical Biology2375101PubMedGoogle Scholar
  25. 25.
    Sharpe, F.R., Lotka, A.J. 1911A Problem in Age-DistributionPhilosophical Magazine21435438Google Scholar
  26. 26.
    Barucci, E, Gozzi, F. 1988Optimal Investment in a Vintage Capital ModelResearch in Economics52159188CrossRefGoogle Scholar
  27. 27.
    Karlin, S. 1968A First Course in Stochastic ProcessesAcademic PressLondon, UKGoogle Scholar
  28. 28.
    Tijms, H.C. 1986Stochastic Modelling and AnalysisWilleyNew York, NYGoogle Scholar
  29. 29.
    Moran., P.A.P. 1962The Statistical Process of Evolutionary TheoryOxford University PressOxford, UKGoogle Scholar
  30. 30.
    Yatsenko, Y, Hritonenko, N. 1994Optimization in Integral Model of Developing SystemsOptimization31179192Google Scholar
  31. 31.
    Silverberg, G. 1988Modeling Economic Dynamics and Technical Change: Mathematical Approaches to Self-Organization and EvolutionDosi, G.Freeman, C.Nelson, R.Silverberg, G.Soete, L. eds. Technical Change and Economic Theory.PinterLondon, UK531559Google Scholar
  32. 32.
    Yatsenko, Y. 1995Volterra Integral Equations with Unknown Delay TimeMethods and Applications of Analysis2408419Google Scholar
  33. 33.
    Hritonenko, N. 2005Optimization Analysis of a Nonlinear Integral Model with Applications to EconomicsNonlinear Studies125970Google Scholar
  34. 34.
    Hritonenko, N, Yatsenko, Y. 1997Turnpike Theorems in an Integral Dynamic Model of Economic RestorationCybernetics and System Analysis33259273Google Scholar
  35. 35.
    Hritonenko, N, Yatsenko, Y. 2004Structure of Optimal Trajectories in a Nonlinear Dynamic Model with Endogenous DelayJournal of Applied Mathematics5433445CrossRefGoogle Scholar
  36. 36.
    Ioffe, A, Tikhomirov, V. 1979Theory of Extremal ProblemsNorth-HollandAmsterdam, HollandGoogle Scholar
  37. 37.
    Yatsenko, Y. 2004Maximum Principle for Volterra Integral Equations with Controlled Delay TimeOptimization53177187CrossRefGoogle Scholar
  38. 38.
    Roubicek, T. 1997Optimal Control of Nonlinear Fredholm Integral EquationsJournal of Optimization Theory and Applications74333348Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • N. Hritonenko
    • 1
  • Yu. Yatsenko
    • 2
  1. 1.Associate Professor, Department of MathematicsPrairie View A&M UniversityPrairie ViewUSA
  2. 2.Associate Professor, College of Business and EconomicsHouston Baptist UniversityHoustonUSA

Personalised recommendations