Skip to main content
Log in

Spectral Gradient Methods for Linearly Constrained Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Linearly constrained optimization problems with simple bounds are considered in the present work. First, a preconditioned spectral gradient method is defined for the case in which no simple bounds are present. This algorithm can be viewed as a quasi-Newton method in which the approximate Hessians satisfy a weak secant equation. The spectral choice of steplength is embedded into the Hessian approximation and the whole process is combined with a nonmonotone line search strategy. The simple bounds are then taken into account by placing them in an exponential penalty term that modifies the objective function. The exponential penalty scheme defines the outer iterations of the process. Each outer iteration involves the application of the previously defined preconditioned spectral gradient method for linear equality constrained problems. Therefore, an equality constrained convex quadratic programming problem needs to be solved at every inner iteration. The associated extended KKT matrix remains constant unless the process is reinitiated. In ordinary inner iterations, only the right-hand side of the KKT system changes. Therefore, suitable sparse factorization techniques can be applied and exploited effectively. Encouraging numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barzilai J. M. Borwein (1988) ArticleTitle Two-Point Stepsize Gradient Methods IMA Journal of Numerical Analysis 8 141–148

    Google Scholar 

  2. M. Raydan (1993) ArticleTitle On the Barzilai and Borwein Choice of Steplength for the Gradient Method IMA Journal of Numerical Analysis 13 321–326

    Google Scholar 

  3. E. G. Birgin I. Chambouleyron J. M. Martínez (1999) ArticleTitle Estimation of Optical Constants of Thin Films Using Unconstrained Optimization Journal of Computational Physics 151 862–880 Occurrence Handle10.1006/jcph.1999.6224 Occurrence Handle1:CAS:528:DyaK1MXjtVKksbg%3D

    Article  CAS  Google Scholar 

  4. E. G. Birgin Y. G. Evtushenko (1998) ArticleTitle Automatic Differentiation and Spectral Projected Gradient Methods for Optimal Control Problems Optimization Methods and Software 10 125–146 Occurrence HandleMR1754734

    MathSciNet  Google Scholar 

  5. M. Raydan (1997) ArticleTitle The Barzilai and Borwein Gradient Method for the Large-Scale Unconstrained Minimization Problem SIAM Journal on Optimization 7 26–33 Occurrence Handle10.1137/S1052623494266365

    Article  Google Scholar 

  6. R. H. Bielschowsky A. Friedlander F. A. M. Gomes J. M. Martínez M. Raydan (1997) ArticleTitle An Adaptive Algorithm for Bound-Constrained Quadratic Minimization Investigación Operativa 7 67–102

    Google Scholar 

  7. A. Friedlander J. M. Martínez M. Raydan (1995) ArticleTitle A New Method for Large-Scale Box Constrained Convex Quadratic Minimization Problems Optimization Methods and Software 5 57–74

    Google Scholar 

  8. E. G. Birgin J. M. Martínez M. Raydan (2000) ArticleTitle Nonmonotone Spectral Projected Gradient Methods on Convex Sets SIAM Journal of Optimization 10 1196–1211 Occurrence Handle10.1137/S1052623497330963

    Article  Google Scholar 

  9. F. Luengo W. Glunt T. L. Hayden M. Raydan (2002) ArticleTitle Preconditioned Spectral Gradient Method Numerical Algorithms 30 241–258 Occurrence Handle10.1023/A:1020181927999

    Article  Google Scholar 

  10. B. Molina M. Raydan (1996) ArticleTitle The Preconditioned Barzilai-Borwein Method for the Numerical Solution of Partial Differential Equations Numerical Algorithms 13 45–60

    Google Scholar 

  11. L. Grippo F. Lampariello S. Lucidi (1986) ArticleTitle A Nonmonotone Line Search Technique for Newton’s Method SIAM Journal on Numerical Analysis 23 707–716 Occurrence Handle10.1137/0723046

    Article  Google Scholar 

  12. E. G. Birgin J. M. Martínez M. Raydan (2003) ArticleTitle Inexact Spectral Projected Gradient Methods on Convex Sets IMA Journal of Numerical Analysis 23 539–559 Occurrence Handle10.1093/imanum/23.4.539

    Article  Google Scholar 

  13. D. P. Bertsekas (1995) Nonlinear Programming Athena Scientific Belmont, Massachusetts

    Google Scholar 

  14. J. M. Martínez (200)) ArticleTitle BOX-QUACAN and the Implementation of Augmented Lagrangian Algorithms for Minimization with Inequality Constraints Computational and Applied Mathematics 19 31–56

    Google Scholar 

  15. F. H. Murphy (1974) ArticleTitle A Class of Exponential Penalty Functions SIAM Journal on Control 12 679–687 Occurrence Handle10.1137/0312052

    Article  Google Scholar 

  16. Martínez, J. M., Pilotta, E. A., and Raydan, M., Spectral Gradient Methods for Linearly Constrained Optimization, Technical Report, Department of Applied Mathematics, University of Campinas, Campinas, SP, Brazil, 2004; see also www.ime.unicamp.br/~martinez.

  17. I. S. Duff J. K. Reid (1082) MA27: A Set of Fortran Subroutines for Solving Sparse Symmetric Sets of Linear Equations Computer Science and System Division, AERE Harwell Oxford, England

    Google Scholar 

  18. N. I. M. Gould (1991) ArticleTitle An Algorithm for Large-Scale Quadratic Programming IMA Journal of Numerical Analysis 11 299–324

    Google Scholar 

  19. A. R. Conn N. I. M. Gould P. L. Toint (1991) ArticleTitle A Globally Convergent Augmented Lagrangian Algorithm for Optimization witn General Constraints and Simple Bounds SIAM Journal on Numerical Analysis 28 545–572 Occurrence Handle10.1137/0728030

    Article  Google Scholar 

  20. A. R. 20 Conn N. I. M. Gould P. L. Toint (1992) Lancelot: A Fortran Package for Large-Scale Nonlinear Optimization (Release A) NumberInSeriesVol.17 Springer Verlag New York, NY

    Google Scholar 

  21. R. J. Vanderbei (1994) LOQO: An Interior-Point Code for Quadratic Programming Princeton University Princeton New Jersey

    Google Scholar 

  22. R. J. Vanderbei D. F. Shanno (1977) An Interior-Point Algorithm for Nonconvex Nonlinear Programming Statistics and Operations Research, Princeton University Princeton, New Jersey

    Google Scholar 

  23. N. Krejić J. M. Martínez M. P. Mello E. A. Pilotta (2000) ArticleTitle Validation of an Augmented Lagrangian Algorithm with a Gauss-Newton Hessian Approximation Using a Set of Hard-Spheres Problems Journal of Computational Optimization and Applications 16 247–263 Occurrence Handle10.1023/A:1008716329104

    Article  Google Scholar 

  24. R. Fletcher (1987) Practical Methods of Optimization Wiley New York, NY

    Google Scholar 

  25. P. E. Gill W. Murray M. H. Wrigth (1981) Practical Optimization Academic Press London, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by FAPESP Grant 2001-04597-4 and Grant 903724-6, FINEP and FAEP-UNICAMP, and the Scientific Computing Center of UCV. The authors thank two anonymous referees whose comments helped us to improve the final version of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.M., Pilotta, E.A. & Raydan, M. Spectral Gradient Methods for Linearly Constrained Optimization. J Optim Theory Appl 125, 629–651 (2005). https://doi.org/10.1007/s10957-005-2093-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-005-2093-3

Keywords

Navigation