Advertisement

Journal of Optimization Theory and Applications

, Volume 123, Issue 3, pp 549–571 | Cite as

Convergence of Sequential Parafirmly Nonexpansive Mappings in Reflexive Banach Spaces

  • M. B. Lee
  • S. H. Park
Article

Abstract

In this paper, we study parafirmly nonexpansive mappings with Bregman distance and weak convergence of underrelaxed sequential parafirmly nonexpansive mappings.

Convex feasibility problems Bregman projections parafirmly nonexpansive mappings asymptotic fixed points almost cyclic control underrelaxation parameters bounded regularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von neumann, J., Functional Operators, II: The Geometry of Orthogonal Spaces, Princeton University Press, Princeton, New Jersey, 1950.Google Scholar
  2. 2.
    Halperin, I., The Product of Projection Operators, Acta Scientiarum Mathematicarum, Vol. 23, pp. 96–99, 1962.Google Scholar
  3. 3.
    Deutsch, F., Best Approximation in Inner Product Spaces, CMS Books in Mathematics, Springer, New York, NY, Vol. 7, 2001.Google Scholar
  4. 4.
    Deutsch, F., The Method of Alternating Orthogonal Projections, Approximation Theory, Spline Functions, and Applications (Maratea, 1991); Edited by S. P. Singh, Kluwer Academic Publishers, Dordrecht, Holland, pp. 105–121, 1992.Google Scholar
  5. 5.
    Bregman, L. M., The Method of Successive Projections for Finding a Common Point of Convex Sets, Soviet Mathematics Doklady, Vol. 6, pp. 688–692, 1965.Google Scholar
  6. 6.
    Bauschke, H. H., and Borwein, J. M., On Projection Algorithms for Solving Convex Feasibility Problems, SIAM Review, Vol. 38, pp. 367–426, 1996.Google Scholar
  7. 7.
    Censor, Y., and Zenios, S. A., Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, New York, NY, 1997.Google Scholar
  8. 8.
    Gubin, L. G., Polyak, B. T., and Raik, E. V., The Method of Projections for Finding the Common Point of Convex Sets, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 1–24, 1967.Google Scholar
  9. 9.
    Bregman, L. M., The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Convex Programming, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 200–217, 1967.Google Scholar
  10. 10.
    Censor, Y., and Elfving, T., A Mutiprojection Algorithm Using Bregman Projections in a Product Space, Numerical Algorithms, Vol. 8, pp. 221–239, 1994.Google Scholar
  11. 11.
    Censor, Y., and Lent, A., An Iterative Row-Action Method for Interval Convex Programming, Journal of Optimization Theory and Applications, Vol. 34, pp. 321–353, 1981.Google Scholar
  12. 12.
    Censor, Y., and Reich, S., Iterations of Paracontractions and Parafirmly Nonexpansive Operators with Applications to Feasibility and Optimization, Optimization, Vol. 37, pp. 323–339, 1996.Google Scholar
  13. 13.
    Bauschke, H. H., and Borwein, J. M., Legendre Functions and the Method of Random Bregman Projections, Journal of Convex Analysis, Vol. 4, pp. 27–67, 1997.Google Scholar
  14. 14.
    Alber, Y., and Butnariu, D., Convergence of Bregman Projection Methods for Solving Consistent Convex Feasibility Problems in Reflexive Banach Spaces, Journal of Optimization Theory and Applications, Vol. 92, pp. 33–61, 1997.Google Scholar
  15. 15.
    Tseng, P., On the Convergence of the Products of Parafirmly Nonexpansive Mappings, SIAM Journal on Optimization, Vol. 2, pp. 425–434, 1992.Google Scholar
  16. 16.
    Reich, S., A Weak Convergence Theorem for the Alternating Method with Bregman Distances, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Dekker, New York, NY, pp. 313–318, 1996.Google Scholar
  17. 17.
    Bauschke, H. H., Borwein, J. M., and Lewis, A. S., The Method of Cyclic Projections for Closed Sets in Hilbert Space, Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem, 1995); Contempory Mathematics, American Mathematical Society, Providence, Rhode Island, Vol. 204, pp. 1–38, 1997.Google Scholar
  18. 18.
    Vladimirov, A. A., Nesterov, Y. E., and Chekanov, Y. N., Uniformly Convex Functionals, Vestnik Moskovskogo Universiteta, Seriya XV, Vychislitelprime naya Matematika i Kibernetika, No. 3, pp. 12–23, 1978 (in Russian).Google Scholar
  19. 19.
    Bauschke, H. H., Borwein, J. M., and Combettes, P. L., Essential Smoothness, Essential Strict Convexity, and Legendre Functions in Banach Spaces, Communications in Contemporary Mathematics, Vol. 3, pp. 615–647, 2001.Google Scholar
  20. 20.
    Bauschke, H. H., Borwein, J. M., and Combettes, P. L., Bregman Monotone Optimization Algorithms, SIAM Journal on Control and Optimization, Vol. 42, pp. 596–636, 2003.Google Scholar
  21. 21.
    Butnariu, D., and Iusem, A. N., Totally Convex Functions for Fixed Points Computation and Infinite-Dimensional Optimization, Applied Optimization, Kluwer Academic Publishers, Dordrecht, Holland, Vol. 40, 2000.Google Scholar
  22. 22.
    Bauschke, H. H., and Lewis, A. S., Dykstra's Algorithm with Bregman Projections: A Convergence Proof, Optimization, Vol. 48, pp. 409–427, 2000.Google Scholar
  23. 23.
    Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley and Sons, New York, NY, 1978.Google Scholar
  24. 24.
    Bauschke, H. H., and Combettes, P. L., Construction of Best Bregman Approximations in Reflexive Banach Spaces, Proceedings of the American Mathematical Society, Vol. 131, pp. 3757–3766, 2003.Google Scholar
  25. 25.
    Censor, Y., Row-Action Methods for Huge and Sparse Systems and Their Applications, SIAM Review, Vol. 23, pp. 444–466, 1981.Google Scholar
  26. 26.
    Censor, Y., and Herman, G. T., Block-Iterative Algorithms with Underrelaxed Bregman Projection, SIAM Journal on Optimization, Vol. 13, pp. 283–297, 2002.Google Scholar
  27. 27.
    Bauschke, H. H., Projection Algorithms and Monotone Operators, PhD Thesis, Simon Fraser University, Burnaby, British Columbia, Canada, 1996.Google Scholar
  28. 28.
    Van tiel, J., Convex Analysis: An Introductory Text, John Wiley and Sons, New York, NY, 1984.Google Scholar
  29. 29.
    Mhaskar, H. N., and Pai, D. V., Fundamental of Approximation Theory, CRC Press, Boca Raton, Florida, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • M. B. Lee
    • 1
  • S. H. Park
    • 1
  1. 1.Department of MathematicsSogang UniversityKorea

Personalised recommendations