Skip to main content
Log in

Convergence of Sequential Parafirmly Nonexpansive Mappings in Reflexive Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study parafirmly nonexpansive mappings with Bregman distance and weak convergence of underrelaxed sequential parafirmly nonexpansive mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von neumann, J., Functional Operators, II: The Geometry of Orthogonal Spaces, Princeton University Press, Princeton, New Jersey, 1950.

    Google Scholar 

  2. Halperin, I., The Product of Projection Operators, Acta Scientiarum Mathematicarum, Vol. 23, pp. 96–99, 1962.

    Google Scholar 

  3. Deutsch, F., Best Approximation in Inner Product Spaces, CMS Books in Mathematics, Springer, New York, NY, Vol. 7, 2001.

    Google Scholar 

  4. Deutsch, F., The Method of Alternating Orthogonal Projections, Approximation Theory, Spline Functions, and Applications (Maratea, 1991); Edited by S. P. Singh, Kluwer Academic Publishers, Dordrecht, Holland, pp. 105–121, 1992.

    Google Scholar 

  5. Bregman, L. M., The Method of Successive Projections for Finding a Common Point of Convex Sets, Soviet Mathematics Doklady, Vol. 6, pp. 688–692, 1965.

    Google Scholar 

  6. Bauschke, H. H., and Borwein, J. M., On Projection Algorithms for Solving Convex Feasibility Problems, SIAM Review, Vol. 38, pp. 367–426, 1996.

    Google Scholar 

  7. Censor, Y., and Zenios, S. A., Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, New York, NY, 1997.

    Google Scholar 

  8. Gubin, L. G., Polyak, B. T., and Raik, E. V., The Method of Projections for Finding the Common Point of Convex Sets, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 1–24, 1967.

    Google Scholar 

  9. Bregman, L. M., The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Convex Programming, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 200–217, 1967.

    Google Scholar 

  10. Censor, Y., and Elfving, T., A Mutiprojection Algorithm Using Bregman Projections in a Product Space, Numerical Algorithms, Vol. 8, pp. 221–239, 1994.

    Google Scholar 

  11. Censor, Y., and Lent, A., An Iterative Row-Action Method for Interval Convex Programming, Journal of Optimization Theory and Applications, Vol. 34, pp. 321–353, 1981.

    Google Scholar 

  12. Censor, Y., and Reich, S., Iterations of Paracontractions and Parafirmly Nonexpansive Operators with Applications to Feasibility and Optimization, Optimization, Vol. 37, pp. 323–339, 1996.

    Google Scholar 

  13. Bauschke, H. H., and Borwein, J. M., Legendre Functions and the Method of Random Bregman Projections, Journal of Convex Analysis, Vol. 4, pp. 27–67, 1997.

    Google Scholar 

  14. Alber, Y., and Butnariu, D., Convergence of Bregman Projection Methods for Solving Consistent Convex Feasibility Problems in Reflexive Banach Spaces, Journal of Optimization Theory and Applications, Vol. 92, pp. 33–61, 1997.

    Google Scholar 

  15. Tseng, P., On the Convergence of the Products of Parafirmly Nonexpansive Mappings, SIAM Journal on Optimization, Vol. 2, pp. 425–434, 1992.

    Google Scholar 

  16. Reich, S., A Weak Convergence Theorem for the Alternating Method with Bregman Distances, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Dekker, New York, NY, pp. 313–318, 1996.

    Google Scholar 

  17. Bauschke, H. H., Borwein, J. M., and Lewis, A. S., The Method of Cyclic Projections for Closed Sets in Hilbert Space, Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem, 1995); Contempory Mathematics, American Mathematical Society, Providence, Rhode Island, Vol. 204, pp. 1–38, 1997.

    Google Scholar 

  18. Vladimirov, A. A., Nesterov, Y. E., and Chekanov, Y. N., Uniformly Convex Functionals, Vestnik Moskovskogo Universiteta, Seriya XV, Vychislitelprime naya Matematika i Kibernetika, No. 3, pp. 12–23, 1978 (in Russian).

    Google Scholar 

  19. Bauschke, H. H., Borwein, J. M., and Combettes, P. L., Essential Smoothness, Essential Strict Convexity, and Legendre Functions in Banach Spaces, Communications in Contemporary Mathematics, Vol. 3, pp. 615–647, 2001.

    Google Scholar 

  20. Bauschke, H. H., Borwein, J. M., and Combettes, P. L., Bregman Monotone Optimization Algorithms, SIAM Journal on Control and Optimization, Vol. 42, pp. 596–636, 2003.

    Google Scholar 

  21. Butnariu, D., and Iusem, A. N., Totally Convex Functions for Fixed Points Computation and Infinite-Dimensional Optimization, Applied Optimization, Kluwer Academic Publishers, Dordrecht, Holland, Vol. 40, 2000.

    Google Scholar 

  22. Bauschke, H. H., and Lewis, A. S., Dykstra's Algorithm with Bregman Projections: A Convergence Proof, Optimization, Vol. 48, pp. 409–427, 2000.

    Google Scholar 

  23. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley and Sons, New York, NY, 1978.

    Google Scholar 

  24. Bauschke, H. H., and Combettes, P. L., Construction of Best Bregman Approximations in Reflexive Banach Spaces, Proceedings of the American Mathematical Society, Vol. 131, pp. 3757–3766, 2003.

    Google Scholar 

  25. Censor, Y., Row-Action Methods for Huge and Sparse Systems and Their Applications, SIAM Review, Vol. 23, pp. 444–466, 1981.

    Google Scholar 

  26. Censor, Y., and Herman, G. T., Block-Iterative Algorithms with Underrelaxed Bregman Projection, SIAM Journal on Optimization, Vol. 13, pp. 283–297, 2002.

    Google Scholar 

  27. Bauschke, H. H., Projection Algorithms and Monotone Operators, PhD Thesis, Simon Fraser University, Burnaby, British Columbia, Canada, 1996.

  28. Van tiel, J., Convex Analysis: An Introductory Text, John Wiley and Sons, New York, NY, 1984.

    Google Scholar 

  29. Mhaskar, H. N., and Pai, D. V., Fundamental of Approximation Theory, CRC Press, Boca Raton, Florida, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.B., Park, S.H. Convergence of Sequential Parafirmly Nonexpansive Mappings in Reflexive Banach Spaces. Journal of Optimization Theory and Applications 123, 549–571 (2004). https://doi.org/10.1007/s10957-004-5723-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-004-5723-2

Navigation