Advertisement

Journal of Optimization Theory and Applications

, Volume 124, Issue 2, pp 387–405 | Cite as

Essential Components of the Set of Weakly Pareto-Nash Equilibrium Points for Multiobjective Generalized Games in Two Different Topological Spaces

Article

Abstract

In this paper, we study the existence and essential components of the set of weakly Pareto-Nash equilibrium points for multiobjective generalized games in two different uniform topological spaces. We obtain some new existence theorems. Examples show that the results are not identical in two different topological spaces.

Keywords

Multiobjective generalized games weakly Pareto-Nash equilibrium points C–concave functions C–quasiconcave-like functions essential components best reply correspondences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, J., Xiang, S. W. 1999On Essential Components of the Set of Nash Equilibrium PointsNonlinear Analysis: Theory, Methods and Applications38259264Google Scholar
  2. Yu, J., Luo, Q. 1999On Essential Components of the Solution Set of Generalized GamesJournal of Mathematical Analysis and Applications230303310Google Scholar
  3. Yang, H., Yu, J. 2002Essential Components of the Set of Weakly Pareto-Nash Equilibrium PointsApplied Mathematics Letters15553560Google Scholar
  4. Kinoshita, S. 1952On Essential Components of the Set of Fixed PointsOsaka Journal of Mathematics41922Google Scholar
  5. Hillas, J. 1990On the Definition of the Strategic Stability of EquilibriaEconometrica5813651390Google Scholar
  6. Jiang, J. H. 1963Essential Components of the Set of Fixed Points of Multivalued Mappings and Its Application to the Theory of GamesScientia Sinica12951964Google Scholar
  7. Kohlberg, E., Mertens, J. F. 1986On the Strategic Stability of EquilibriaEconometrica5410031037Google Scholar
  8. Ansari, Q. H., Schaible, S., Yao, J. C. 2002The System of Generalized Vector Equilibrium Problems with ApplicationsJournal of Global Optimization22316Google Scholar
  9. Aliprantis, C. D., Border, K. C. 1999Infinite-Dimensional AnalysisSpringer VerlagBerlin, GermanyGoogle Scholar
  10. Engelking, R. 1989General TopologyHeldermann VerlagBerlin, GermanyGoogle Scholar
  11. Aubin, J. P., Ekeland, I. 1984 Applied Nonlinear AnalysisJohn Wiley and Sons New York, NYGoogle Scholar
  12. Klein, E., Thompson, A. C. 1984Theory of CorrespondencesJohn Wiley and SonsNew York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Z. Lin
    • 1
  1. 1.Department of Applied Mathematics, School of InformationZhejiang University, Guizhou College of Finance and EconomicsHangzhou, GuiyangP. R. China

Personalised recommendations