Advertisement

Journal of Science Education and Technology

, Volume 27, Issue 3, pp 256–269 | Cite as

Effectiveness of an Asynchronous Online Module on University Students’ Understanding of the Bohr Model of the Hydrogen Atom

  • William J. FarinaJr
  • Alec M. Bodzin
Article

Abstract

Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.

Keywords

Online learning Asynchronous learning Chemical education Undergraduate chemistry 

Notes

Acknowledgements

The authors would like to thank Tom Hammond, Brook Sawyer, Joan Fu, Mary Jo Bojan, Lori Stepan Van Der Sluys, and Katie Farina for their feedback and suggestions.

Supplementary material

10956_2017_9722_MOESM1_ESM.pdf (759 kb)
ESM 1 (PDF 759 kb)

References

  1. Allen, I. E., & Seaman, J. (2010). Learning on demand: online education in the United States, 2009. Retrieved from http://sloanconsortium.org/publications/survey/pdf/learningondemand.pdf.
  2. Allen, I.E., & Seaman, J. (2015). Grade level: tracking online education in the United States. Retrieved from http://onlinelearningconsortium.org/read/survey-reports-2014/.
  3. Allen, I. E., Seaman, J., Poulin, R., & Straut, T. T. (2016). Online report card: tracking online education in the United States. Retrieved from https://onlinelearningconsortium.org/read/online-report-card-tracking-online-education-united-states-2015/.
  4. Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn. Washington, D.C.: National Academy Press.Google Scholar
  5. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182.  https://doi.org/10.1207/s15516709cog1302_1.CrossRefGoogle Scholar
  6. Chiu, J. L., & Linn, M. C. (2014). Supporting knowledge integration in chemistry with a visualization-enhanced inquiry unit. Journal of Science Education and Technology, 23(1), 37–58.  https://doi.org/10.1007/s10956-013-9449-5.CrossRefGoogle Scholar
  7. Clark, T. M., & Chamberlain, J. M. (2014). Use of PhET interactive simulation in general chemistry laboratory: models of the hydrogen atom. Journal of Chemical Education, 91(8), 1198–1202.  https://doi.org/10.1021/ed400454p.CrossRefGoogle Scholar
  8. Cox, R. D. (2005). Online education as institutional myth: rituals and realities at community colleges. Teachers College Record, 107(8), 1754–1787.  https://doi.org/10.1111/j.1467-9620.2005.00541.x.CrossRefGoogle Scholar
  9. Creswell, J. M. (2011). Designing and conducting mixed methods research (2nd ed.). Thousand Oaks: Sage.Google Scholar
  10. Davis, K. S., & Snyder, W. (2012). Fostering science education in an online environment: are we there yet? Journal of College Science Teaching, 42, 24–31.Google Scholar
  11. de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.  https://doi.org/10.3102/00346543068002179.CrossRefGoogle Scholar
  12. Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227–1245.  https://doi.org/10.1080/0950069022000038231.CrossRefGoogle Scholar
  13. Gabel, D. L., Samuel, K. V., & Hunn, D. (1981). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695.  https://doi.org/10.1021/ed064p695.CrossRefGoogle Scholar
  14. Garrett, A. B. (1962). The Bohr model: Niels Bohr. Journal of Chemical Education, 39(10), 534–535.  https://doi.org/10.1021/ed039p534.CrossRefGoogle Scholar
  15. Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39(5), 725–751.  https://doi.org/10.1007/s11165-008-9101-1.CrossRefGoogle Scholar
  16. Hallyburton, C. L., & Lunsford, E. (2013). Challenges and opportunities for learning biology in distance-based settings. Interdisciplinary Science Literacy, 39(1), 27–33.Google Scholar
  17. Jaggers, S. S., & Bailey, T. (2010). Effectiveness of fully online courses for college students: response to a Department of Education meta-analysis. Community College Research Center. Retrieved from http://ccrc.tc.columbia.edu/publications/effectiveness-fully-online-courses.html.
  18. Levy, D. (2013). How dynamic visualization technology can support molecular reasoning. Journal of Science Education and Technology, 22(5), 702–717.  https://doi.org/10.1007/s10956012-9424-6.CrossRefGoogle Scholar
  19. Limniou, M., Papadopoulos, N., Giannakoudakis, A., Roberts, D., & Otto, O. (2007). The integration of a viscosity simulator in a chemistry laboratory. Chemistry Education Research and Practice, 8(2), 220–231.  https://doi.org/10.1039/B6RP90032A.CrossRefGoogle Scholar
  20. Linn, M. C. (2001). Science education: preparing lifelong learners. In N. J. Smelser & P. B. Baltes (Eds.), The international encyclopeida of the social and behavioral sciences. New York: Pergamon.  https://doi.org/10.1016/B0-08-043076-7/02441-4.Google Scholar
  21. Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: science learning partners. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  22. Linn, M. C., Davis, E. A., & Eylon, B.-S. (2004a). The scaffolded knowledge integration framework for instruction. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 47–72). New York: Routledge.Google Scholar
  23. Linn, M. C., Eylon, B.-S., & Davis, E. A. (2004b). The knowledge integration perspective on learning. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 29–46). New York: Routledge.Google Scholar
  24. Martinez-Jimenez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. S. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 90(3), 346–352.Google Scholar
  25. Models of the Hydrogen Atom. (2016, February 22). Retrieved Apr. 2016, from https://phet.colorado.edu/en/simulation/hydrogen-atom.
  26. Nakhleh, M. B. (1992). Why some students don’t learn chemistry: chemical misconceptions. Journal of Chemical Education, 69(3), 191–196.  https://doi.org/10.1021/ed069p191.CrossRefGoogle Scholar
  27. Niaz, M., & Cardellini, L. (2011). What can the Bohr-Sommerfeld model show students of chemistry in the 21st century? Journal of Chemical Education, 88(2), 240–243.  https://doi.org/10.1021/ed100481e.CrossRefGoogle Scholar
  28. Perry, E. H., & Pilati, M. L. (2011). Online learning. New Directions for Teaching and Learning, 2011(128), 95–104.  https://doi.org/10.1002/tl.472.CrossRefGoogle Scholar
  29. Piaget, J. (1964). Development and learning. Journal of Research in Science Teaching, 2(3), 176–186.  https://doi.org/10.1002/tea.3660020306.CrossRefGoogle Scholar
  30. Pienta, N. (2013). Online courses in chemistry: Salvation or downfall? [Editorial]. Journal of Chemical Education, 90(3), 271–272.  https://doi.org/10.1021/ed400097s.CrossRefGoogle Scholar
  31. Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). Ann Arbor: University of Michigan, National Center for Research to Improve Postsecondary Teaching and Learning.Google Scholar
  32. Pintrich, P. R., Smith, D. A., Garcia, T., & Mckeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (Mslq). Educational and Psychological Measurement, 53(3), 801–813.  https://doi.org/10.1177/0013164493053003024.CrossRefGoogle Scholar
  33. Reuter, R. (2009). Online versus in the classroom: student success in a hands-on lab class. The American Journal of Distance Education, 23(3), 151–162.  https://doi.org/10.1080/08923640903080620.CrossRefGoogle Scholar
  34. Richards-Babb, M., Curtis, R., Smith, V. J., & Xu, M. (2014). Problem solving videos for general chemistry review: students’ perceptions and use patterns. Journal of Chemical Education, 91(11), 1796–1803.  https://doi.org/10.1021/ed500280b.CrossRefGoogle Scholar
  35. Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers in Education, 58(1), 136–153.  https://doi.org/10.1016/j.compedu.2011.07.017.CrossRefGoogle Scholar
  36. Saltmarsh, S., & Sutherland-Smith, W. (2010). S(t)imulating learning: pedagogy, subjectivity and teacher education in online environments. London Review of Education, 8(1), 15–24.  https://doi.org/10.1080/14748460903557613.CrossRefGoogle Scholar
  37. Sanger, M. J., & Badger II, S. M. (2001). Using computer-based visualization strategies to improve students’ understanding of molecular polarity and miscibility. Journal of Chemical Education, 78(10), 1412.  https://doi.org/10.1021/ed078p1412.CrossRefGoogle Scholar
  38. Sanger, M. J., Phelps, A. J., & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77(11), 1517.  https://doi.org/10.1021/ed077p1517.CrossRefGoogle Scholar
  39. U.S. Department of Education, Office of Planning, Evaluation, and Policy Development. (2010). Evaluation of evidence-based practices in online learning: a meta-analysis and review of online learning studies. Retrieved from: http://www2.ed.gov/rschstat/eval/tech/evidence-based-practices/finalreport.pdf.
  40. Venkataraman, B. (2009). Visualization and interactivity in the teaching of chemistry to science and non-science students. Chemistry Education Research and Practice, 10(1), 62–69.  https://doi.org/10.1039/B901462B.CrossRefGoogle Scholar
  41. Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.Google Scholar
  42. Wilson, D., & Allen, D. (2011). Success rates of online versus traditional college students. Research in Higher Education Journal, 14, 1–9.Google Scholar
  43. Winberg, T. M., & Berg, C. A. R. (2007). Students’ cognitive focus during chemistry laboratory exercise: effects of a computer-simulated prelab. Journal of Research in Science Teaching, 35(2), 145–160.Google Scholar
  44. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492.  https://doi.org/10.1002/sce.10126.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations