Journal of Science Education and Technology

, Volume 26, Issue 2, pp 161–174 | Cite as

Visual Literacy in Primary Science: Exploring Anatomy Cross-Section Production Skills

  • Beatriz García Fernández
  • José Reyes Ruiz-Gallardo


Are children competent producing anatomy cross-sections? To answer this question, we carried out a case study research aimed at testing graphic production skills in anatomy of nutrition. The graphics produced by 118 children in the final year of primary education were analysed. The children had to draw a diagram of a human cross section, integrating knowledge of anatomy acquired from longitudinal sections. The results show that they have very limited skills in producing these graphics judging by the dimensions (scale, shape, organs represented and its organization inside the section) and their conception of human anatomy at thoracic level (location of the organs, elements in the spaces between them and connections between organs). The results also indicate that the only exposure to cross-sections in daily life is not enough by itself to draw them correctly, so this type of graphic production should be addressed from the earliest stages of education, since it contributes to the development of visual literacy, and this is a crucial skill when it comes to learning science concepts and developing scientific literacy.


Science education Biology education Visual literacy Primary education Anatomy diagrams Cross-sections production 



We are especially grateful to the children and teachers of the public participating schools (Cristóbal Valera, San Fernando and San Fulgencio, in Albacete, Spain), who kindly allowed us to carry out this research.


  1. Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In: J.K. Gilbert, M. Reiner, M. Nakhleh -8eds.), Visualization: Theory and practice in science education (pp. 191–208). Dordrecht , The Netherlands: Springer Science+Business Media B.V.Google Scholar
  2. Ainsworth S, Prain V, Tytler R (2011) Drawing to learn in science. Science 333(6046):1096–1097. doi: 10.1126/science.1204153 CrossRefGoogle Scholar
  3. Allen M (2010) Misconceptions in primary science. McGraw-Hill, BerkshireGoogle Scholar
  4. Association of College and Research Libraries (2011) ACRL visual literacy competency standards for higher education. American Library Association, Chicago, Illinois, Accessed 20 Oct 2016
  5. Avargil S, Herscovitz O, Dori YJ (2012) Teaching thinking skills in context-based learning: teachers’ challenges and assessment knowledge. J Sci Educ Technol 21:207–225. doi: 10.1007/s10956-011-9302-7 CrossRefGoogle Scholar
  6. Bandiera M, di Manno V (2001) Through the windpipe and intestine down to the stomach: attitude and competence of prospective primary school teachers. In: García-Rodeja I, Díaz de Bustamante J, Harms U, Jiménez MP (eds) Proceedings of the III conference of European researchers in didactic of biology. Universidade de Santiago de Compostela, Santiago de Compostela, pp 27–39Google Scholar
  7. Banet E, Nuñez F (1988) Ideas de los alumnos sobre la digestión: aspectos anatómicos. Enseñanzas de las Ciencias 6(1):30–37Google Scholar
  8. Banet E, Núñez F (1997) Teaching and learning about human nutrition: a constructivist approach. Int J Sci Educ 19(10):1169–1194. doi: 10.1080/0950069970191005 CrossRefGoogle Scholar
  9. Beal CR, Arnold DS (1990) The effect of instructions on view-specificity in young children’s drawing and picture selection. Br J Dev Psychol 8(4):393–400. doi: 10.1111/j.2044-835X.1990.tb00853.x CrossRefGoogle Scholar
  10. Bergey BW, Cromley JG, Newcombe NS (2015) Teaching high school biology students to coordinate text and diagrams: relations with transfer, effort, and spatial skill. Int J Sci Educ 37(15):2476–2502. doi: 10.1080/09500693.2015.1082672 CrossRefGoogle Scholar
  11. Biggs JB (ed) (1991) Teaching for learning: the view from cognitive psychology. Australian Council for Educational Research, HawthornGoogle Scholar
  12. Britsch S (2013) Visual language and science understanding: a brief tutorial for teachers. Aust J Lang Lit 36(1):17–27Google Scholar
  13. Carvalho GS, Silva R, Clément P (2007) Historical analysis of Portuguese primary school textbooks (1920–2005) on the topic of digestion. Int J Sci Educ 29(2):173–193. doi: 10.1080/09500690600739340 CrossRefGoogle Scholar
  14. Cheng Y-L, Mix KS (2014) Spatial Training Improves Children’s Mathematics Ability. J Cogn Dev 15(1):2–11. doi: 10.1080/15248372.2012.725186
  15. Coleman C (2011) Teaching health care professionals about health literacy: a review of the literature. Nurs Outlook 59(2):70–78. doi: 10.1016/j.outlook.2010.12.004 CrossRefGoogle Scholar
  16. Davies D (2010) Teaching science creatively. Routledge, New YorkGoogle Scholar
  17. Donovan J, Venville G (2014) Blood and bones: the influence of the mass media on Australian primary school children’s understandings of genes and DNA. Sci and Educ 23(2):325–360. doi: 10.1007/s11191-012-9491-3 CrossRefGoogle Scholar
  18. Eilam B (2012) Teaching, learning, and visual literacy. The dual role of visual representation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Felten P (2008) Visual literacy. Change: The Magazine of Higher Learning 40(6):60–64. doi: 10.3200/CHNG.40.6.60–64
  20. Goldstein B (2001) Working with images. Cambridge University Press, CambridgeGoogle Scholar
  21. Hattwig D, Bussert K, Medaille A, Burgess J (2013) Visual literacy standards in higher education: new opportunities for libraries and student learning. Portal: Libr Acad 13(1):61–89. doi: 10.1353/pla.2013.0008 CrossRefGoogle Scholar
  22. Kindfield ACH (1994) Biology diagrams: tools to think with. J Learn Sci 3(1):1–36. doi: 10.1207/s15327809jls0301_1 CrossRefGoogle Scholar
  23. Krajcik JS, Sutherland LM (2010) Supporting students in developing literacy in science. Science 328(5977):456–459. doi: 10.1126/science.1182593 CrossRefGoogle Scholar
  24. Kress G, Van Leeuwen T (2006) Reading images: the grammar of visual images. Routledge, LondonGoogle Scholar
  25. Lee VR (2010) Adaptations and continuities in the use and Design of Visual Representations in US middle school science textbooks. Int J Sci Educ 32(8):1099–1126. doi: 10.1080/09500690903253916 CrossRefGoogle Scholar
  26. Lee S, Kang E, Kim HB (2015) Exploring the impact of students’ learning approach on collaborative group modeling of blood circulation. J Sci Educ Technol 24(2–3):234–255. doi: 10.1007/s10956-014-9509-5 CrossRefGoogle Scholar
  27. Little D (2015) Teaching visual literacy across the curriculum: suggestions and strategies. New Dir Teach Learn 141:87–90. doi: 10.1002/tl.20125 CrossRefGoogle Scholar
  28. López-Manjón A, Postigo Y (2014) Análisis de las imágenes del cuerpo humano en libros de texto españoles de primaria. Enseñanza de las Ciencias 32(3):551–570Google Scholar
  29. Lowe RK (2007) Educational illustrations. Savant Publications, Western AustraliaGoogle Scholar
  30. Lundy AD, Stephens AE (2015) Beyond the literal: teaching visual literacy in the twenty-first century classroom. Procedia-Social Behav Sci 174:1057–1060. doi: 10.1016/j.sbspro.2015.01.794 CrossRefGoogle Scholar
  31. Mackenzie N (2011) From drawing to writing: what happens when you shift teaching priorities in the first six months of school? Aust J Lang Lit 34(3):322–340Google Scholar
  32. Magner UIE, Schwonke R, Aleven V, Popescu O, Renkl A (2014) Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learn Instr 29:141–152. doi: 10.1016/j.learninstruc.2012.07.002 CrossRefGoogle Scholar
  33. Mason L, Tornatora MC, Pluchino P (2013) Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Comput Educ 60(1):95–109. doi: 10.1016/j.compedu.2012.07.011 CrossRefGoogle Scholar
  34. Mayer RE, Bove W, Bryman A, Mars R, Tapangco L (1996) When less is more: meaningful learning from visual and verbal summaries of science textbook lessons. J Educ Psychol 88(1):64–73. doi: 10.1037/0022-0663.88.1.64 CrossRefGoogle Scholar
  35. McTigue EM, Flowers AC (2011) Science visual literacy: learners’ perceptions and knowledge of diagrams. Read Teach 64(8):578–589. doi: 10.1598/RT.64.8.3 CrossRefGoogle Scholar
  36. Metros SE, Woolsey K (2006) Visual literacy: an institutional imperative. Educ Rev 41(3):80–81Google Scholar
  37. Mishra P (1999) The role of abstraction in scientific illustrations: implications for pedagogy. J Vis Lit 19(2):139–158CrossRefGoogle Scholar
  38. Moline S (2011) I see what you mean: visual literacy K-8. Stenhouse Publishers, USAGoogle Scholar
  39. Moss G (2001) To work or play? Junior age nonfiction as objects of design. Reading 35:106–110. doi: 10.1111/1467-9345.00171 CrossRefGoogle Scholar
  40. National Research Council (2012) In: Schweingruber H, Keller T, Quinn H (eds) A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, WashingtonGoogle Scholar
  41. National Research Council (2013) The next generation science standards, appendix F: science and engineering practices. National Academy of Sciences, United States Retrieved from: Google Scholar
  42. Nuñez F, Banet E (1996) Modelos conceptuales sobre las relaciones entre digestión, respiración y circulación. Enseñanza de las Ciencias 14(3):261–278Google Scholar
  43. Nuñez F, Banet E (1997) Students’ conceptual patterns of human nutrition. Int J Sci Educ 19(5):509–526. doi: 10.1080/0950069970190502 CrossRefGoogle Scholar
  44. Oblinger D, Oblinger J (2005) Is it age or IT: first steps toward understanding the net generation. Educating the net generation 2(1–2):20Google Scholar
  45. O’Neil KE (2011) Reading pictures: developing visual literacy for greater comprehension. Read Teach 65(3):214–223. doi: 10.1002/TRTR.01026 CrossRefGoogle Scholar
  46. Painter C, Martin JR, Unsworth L (2013) Reading visual narratives: image analysis of Children’s picture books. Equinox, SheffieldGoogle Scholar
  47. Patrick PG, Tunnicliffe SD (2010) Science teachers’ drawings of what is inside the human body. J Biol Educ 44(2):81–87. doi: 10.1080/00219266.2010.9656198 CrossRefGoogle Scholar
  48. Pérez de Eulate L, Llorente E, Andrieu A (1999) Las imágenes de digestión y excreción en los textos de primaria. Enseñanza de las Ciencias 17(2):165–168Google Scholar
  49. Pettersson R (2002) Information design: an introduction. John Benjamins, AmsterdamCrossRefGoogle Scholar
  50. Postigo Y, López-Manjón A (2012) Students’ conceptions of biological images as representational devices. Revista Colombiana de Psicología 21(2):265–284Google Scholar
  51. Prokop P, Prokop M, Tunnicliffe SD, Diran C (2006) Children’s ideas of animals’ internal structures. J Biol Educ 41(2):62–67CrossRefGoogle Scholar
  52. Prokop P, Fancovicová J (2006) Students’ ideas about the human body: do they really draw what they know? J Balt Sci Educ 2(10):86–95Google Scholar
  53. Reid DJ (1990) The role of pictures in learning biology: part 2, picture text processing. J Biol Educ 24(4):251–258. doi: 10.1080/00219266.1990.9655153 CrossRefGoogle Scholar
  54. Reiss MJ, Tunnicliffe SD (2001) Students’ understandings of human organs and organ systems. Res Sci Educ 31:383–399. doi: 10.1023/A:1013116228261 CrossRefGoogle Scholar
  55. Reiss MJ, Tunnicliffe SD, Andersen AM, Bartoszeck A, Carvalho GS, Chen SY, Jarman R, Jónsson S, Manokore V, Marchenko N, Mulemwa J, Novikova T, Otuka T, Teppa S, Van Roy W (2002) An international study of young peoples’ drawings of what is inside themselves. J Biol Educ 36(2):58–64. doi: 10.1080/00219266.2002.9655802 CrossRefGoogle Scholar
  56. Ruiz-Gallardo JR, Valdés A, Sáez JM, Roldán J (2012) La realización de gráficos como medio de aprendizaje en Biología. In: Domínguez-Castiñeiras JM (ed) XXV Encuentro de Didáctica de las Ciencias Experimentales, libro de actas. Universidade de Santiago de Compostela, Santiago de Compostela, pp 1307–1312Google Scholar
  57. Rybarczyk B (2011) Visual literacy in biology: a comparison of visual representations in textbooks and journal articles. J Coll Sci Teach 41(1):106Google Scholar
  58. Sáez López JM, Ruiz-Gallardo JR (2013) Enseñanza de las ciencias, tecnología educativa y escuela rural: un estudio de casos. Revista Electrónica de Enseñanza de las Ciencias 12(1):45–61Google Scholar
  59. Scaife M, Rogers Y (1996) External cognition: how do graphical representations work?. Int J Hum Comput Stud 45(2):185-213Google Scholar
  60. Slough SW, McTigue EM, Kim S, Jennings SK (2010) Science textbooks’ use of graphical representation: a descriptive analysis of four sixth grade science texts. Read Psychol 31(3):301–325. doi: 10.1080/02702710903256502 CrossRefGoogle Scholar
  61. Tunnicliffe SD, Reiss MJ (1999) Students’ understanding about animal skeletons. Int J Sci Educ 21:1187–1200. doi: 10.1080/095006999290147 CrossRefGoogle Scholar
  62. Van Joolingen WR, Aukes AV, Gijlers H, Bollen L (2015) Understanding elementary astronomy by making drawing-based models. J Sci Educ Technol 24(2–3):256–264. doi: 10.1007/s10956-014-9540-6 CrossRefGoogle Scholar
  63. Williams TL (2007) Reading the painting: exploring visual literacy in the primary grades. Read Teach 60(7):636–642. doi: 10.1598/RT.60.7.4 CrossRefGoogle Scholar
  64. Yeh HT, Cheng YC (2010) The influence of the instruction of visual design principles on improving pre-service teachers’ visual literacy. Comput Educ 54:244–252. doi: 10.1016/j.compedu.2009.08.008
  65. Yip DY (1998) Teachers’ misconceptions of the circulatory system. J Biol Educ 32(3):207–215. doi: 10.1080/00219266.1998.9655622 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Science Education (Department of Pedagogy), Faculty of Education of Ciudad RealUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Science Education (Department of Pedagogy). Faculty of Education of AlbaceteUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations