Journal of Science Education and Technology

, Volume 18, Issue 3, pp 209–223 | Cite as

The Impact of an Engineering Design Curriculum on Science Reasoning in an Urban Setting

  • Eli M. Silk
  • Christian D. Schunn
  • Mari Strand Cary


This study examines the use of engineering design to facilitate science reasoning in high-needs, urban classrooms. The Design for Science unit utilizes scaffolds consistent with reform science instruction to assist students in constructing a design solution to satisfy a need from their everyday lives. This provides a meaningful context in which students could reason scientifically. Eighth grade students from two urban schools participated in the unit. Both schools contained large percentages of racial/ethnic minority and economically disadvantaged students. Students demonstrated statistically significant improvement on a paper-and-pencil, multiple-choice pre and post assessment. The results compare favorably with both a high-quality inquiry science unit and a traditional textbook curriculum. Implications for the use of design-based curricula as a viable alternative for teaching science reasoning in high-needs, urban settings are discussed.


Science reasoning Engineering design Design for science Urban education 



We would like to acknowledge Anton Lawson for allowing us to use the Classroom Test of Scientific Reasoning, Kalyani Raghavan from the MARS curriculum for her help with the data collection and useful feedback on the writing, and the teachers and students who invited us into their classrooms. This work was supported by the National Science Foundation under Grant EHR-0227016. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. Apedoe XS, Reynolds B, Ellefson MR, Schunn CD (2008) Bringing engineering design into high school science classrooms: the heating/cooling unit. J Sci Educ Technol 17:454–465. doi: 10.1007/s10956-008-9114-6 CrossRefGoogle Scholar
  2. Barron BJS, Schwartz DL, Vye NJ, Moore A, Petrosino A, Zech L, Bransford JD, The Cognition Technology Group at Vanderbilt (1998) Doing with understanding: lessons from research on problem-and project-based learning. J Learn Sci 7(3/4):271–311. doi: 10.1207/s15327809jls0703&4_2 CrossRefGoogle Scholar
  3. Benenson G (2001) The unrealized potential of everyday technology as a context for learning. J Res Sci Teach 38(7):730–745. doi: 10.1002/tea.1029 CrossRefGoogle Scholar
  4. Blumenfeld PC, Soloway E, Marx RW, Krajcik JS, Guzdial M, Palincsar AS (1991) Motivating project-based learning: sustaining the doing, supporting the learning. Educ Psychol 26(3):369–398. doi: 10.1207/s15326985ep2603&4_8 CrossRefGoogle Scholar
  5. Bransford JD, Schwartz DL (1999) Rethinking transfer: a simple proposal with multiple implications. Rev Res Educ 24:61–100Google Scholar
  6. Bransford JD, Brown AL, Cocking RR (2000) How people learn: brain, mind, experience, and school. National Academy Press, Washington, DCGoogle Scholar
  7. Buxton CA (2005) Creating a culture of academic success in an urban science and math magnet high school. Sci Educ 89:392–417. doi: 10.1002/sce.20057 CrossRefGoogle Scholar
  8. Cajas F (2001) The science/technology interaction: implications for science literacy. J Res Sci Teach 38(7):715–729. doi: 10.1002/tea.1028 CrossRefGoogle Scholar
  9. Cawley JF, Parmar RS (2001) Literacy proficiency and science for students with learning disabilities. Read Writ Q 17:105–125. doi: 10.1080/105735601300007589 CrossRefGoogle Scholar
  10. Chinn CA, Malhotra BA (2002) Epistemologically authentic inquiry in schools: a theoretical framework for evaluating inquiry tasks. Sci Educ 86(2):175–218. doi: 10.1002/sce.10001 CrossRefGoogle Scholar
  11. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159. doi: 10.1037/0033-2909.112.1.155 CrossRefGoogle Scholar
  12. Coletta VP, Phillips JA (2005) Interpreting FCI scores: normalized gain, preinstruction scores, and scientific reasoning ability. Am J Phys 73(12):1172–1182. doi: 10.1119/1.2117109 CrossRefGoogle Scholar
  13. Crismond D (2001) Learning and using science ideas when doing investigate-and-redesign tasks: a study of naive, novice, and expert designers doing constrained and scaffolded design work. J Res Sci Teach 38(7):791–820. doi: 10.1002/tea.1032 CrossRefGoogle Scholar
  14. De Miranda MA (2004) The grounding of a discipline: cognition and instruction in technology education. Int J Technol Des Educ 14:61–77. doi: 10.1023/B:ITDE.0000007363.44114.3b CrossRefGoogle Scholar
  15. Doppelt Y, Mehalik MM, Schunn CD (2005) A close-knit collaboration between researchers and teachers for developing and implementing a design-based science module, Annual Meeting of the National Association of Research in Science Teaching (NARST), Dallas, TXGoogle Scholar
  16. Fortus D, Dershimer RC, Krajcik JS, Marx RW, Mamlok-Naaman R (2004) Design-based science and student learning. J Res Sci Teach 41(10):1081–1110. doi: 10.1002/tea.20040 CrossRefGoogle Scholar
  17. Fortus D, Krajcik JS, Dershimer RC, Marx R, Mamlok-Naaman R (2005) Design-based science and real-world problem-solving. Int J Sci Educ 27(7):855–879. doi: 10.1080/09500690500038165 CrossRefGoogle Scholar
  18. Germann PJ, Haskins S, Auls S (1996) Analysis of nine high school biology laboratory manuals: promoting scientific inquiry. J Res Sci Teach 33(5):475–499. doi:10.1002/(SICI)1098-2736(199605)33:5<475::AID-TEA2>3.0.CO;2-OCrossRefGoogle Scholar
  19. Gleitman L, Papafragou A (2005) Language and thought. In: Holyoak KJ, Morrison RG (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, New York, pp 633–661Google Scholar
  20. Graham S, Taylor AZ, Hudley C (1998) Exploring achievement values among ethnic minority early adolescents. J Educ Psychol 90(4):606–620. doi: 10.1037/0022-0663.90.4.606 CrossRefGoogle Scholar
  21. Haberman M (1991) Pedagogy of poverty versus good teaching. Phi Delta Kappan 73:290–294Google Scholar
  22. Hestenes D, Wells M, Swackhamer G (1992) Force concept inventory. Phys Teach 30:141–158. doi: 10.1119/1.2343497 CrossRefGoogle Scholar
  23. Hmelo CE, Holton DL, Kolodner JL (2000) Designing to learn about complex systems. J Learn Sci 9(3):247–298. doi: 10.1207/S15327809JLS0903_2 CrossRefGoogle Scholar
  24. Holbrook JK, Gray JT, Fasse BB, Camp PJ, Kolodner JL (2001) Assessment and evaluation of the Learning by Design™ physical science unit, 1999–2000: a document in progress. Retrieved February, 2007 from
  25. International Association for the Evaluation of Educational Achievement (1998) TIMSS science items: released set for population 2 (7th and 8th grades). Retrieved from
  26. Johnson MA, Lawson AE (1998) What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes. J Res Sci Teach 35(1):89–103. doi:10.1002/(SICI)1098-2736(199801)35:1<89::AID-TEA6>3.0.CO;2-JCrossRefGoogle Scholar
  27. Jones MG, Howe A, Rua MJ (2000) Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Sci Educ 84:180–192. doi:10.1002/(SICI)1098-237X(200003)84:2<180::AID-SCE3>3.0.CO;2-XCrossRefGoogle Scholar
  28. Kahle JB, Meece J, Scantlebury K (2000) Urban African–American middle school science students: does standards-based teaching make a difference? J Res Sci Teach 37(9):1019–1041. doi:10.1002/1098-2736(200011)37:9<1019::AID-TEA9>3.0.CO;2-JCrossRefGoogle Scholar
  29. Kanari Z, Millar R (2004) Reasoning from data: how students collect and interpret data in science investigations. J Res Sci Teach 41(7):748–769. doi: 10.1002/tea.20020 CrossRefGoogle Scholar
  30. Klahr D, Li J (2005) Cognitive research and elementary science instruction: from the laboratory, to the classroom, and back. J Sci Educ Technol 14(2):217–238. doi: 10.1007/s10956-005-4423-5 CrossRefGoogle Scholar
  31. Kolodner JL, Camp PJ, Crismond D, Fasse B, Gray J, Holbrook J, Puntambekar S, Ryan M (2003a) Problem-based learning meets case-based reasoning in the middle-school science classroom: putting learning by design™ into practice. J Learn Sci 12(4):495–547. doi: 10.1207/S15327809JLS1204_2 CrossRefGoogle Scholar
  32. Kolodner JL, Gray JT, Fasse BB (2003b) Promoting transfer through case-based reasoning: rituals and practices in learning by design™ classrooms. Cogn Sci Q 3(2):183–232Google Scholar
  33. Kuhn D (2007) Reasoning about multiple variables: control of variables is not the only challenge. Sci Educ 91(5):710–726. doi: 10.1002/sce.20214 CrossRefGoogle Scholar
  34. Kuhn D, Dean D Jr (2008) Scaffolded development of inquiry skills in academically disadvantaged middle-school students. J Psychol Sci Technol 1(2):36–50CrossRefGoogle Scholar
  35. Lawrenz F, Huffman D, Welch W (2001) The science achievement of various subgroups on alternative assessment formats. Sci Educ 85(3):279–290. doi: 10.1002/sce.1010 CrossRefGoogle Scholar
  36. Lawson AE (1978) The development and validation of a classroom test of formal reasoning. J Res Sci Teach 15(1):11–24. doi: 10.1002/tea.3660150103 CrossRefGoogle Scholar
  37. Lawson AE (1987) Classroom test of scientific reasoning: revised paper and pencil version. Arizona State University, TempeGoogle Scholar
  38. Lee O, Deaktor RA, Hart JE, Cueva P, Enders C (2005) An instructional intervention’s impact on the science and literacy achievement of culturally and linguistically diverse elementary students. J Res Sci Teach 42(8):857–887. doi: 10.1002/tea.20071 CrossRefGoogle Scholar
  39. Leonard MJ (2005) Examining tensions in a “Design for Science” activity system: science versus engineering goals and knowledge. J Res Teach Educ 3:132–146 Tidskrift for Lararutbildning och ForskningGoogle Scholar
  40. Lewis T (2006) Design and inquiry: bases for an accommodation between science and technology education in the curriculum? J Res Sci Teach 43(3):255–281. doi: 10.1002/tea.20111 CrossRefGoogle Scholar
  41. Li J, Klahr D, Siler S (2006) What lies beneath the science achievement gap: the challenges of aligning science instruction with standards and tests. Sci Educ 15(1):1–12. doi: 10.1007/s11191-004-4812-9 CrossRefGoogle Scholar
  42. Lundy GF (2003) School resistance in American high schools: the role of race and gender in oppositional culture theory. Eval Res Educ 17(1):6–30CrossRefGoogle Scholar
  43. Lynch S, Kuipers J, Pyke C, Szesze M (2005) Examining the effects of a highly rated science curriculum unit on diverse students: results from a planning grant. J Res Sci Teach 42(8):912–946. doi: 10.1002/tea.20080 CrossRefGoogle Scholar
  44. McCarthy CB (2005) Effects of thematic-based, hands-on science teaching versus a textbook approach for students with disabilities. J Res Sci Teach 42(3):245–263. doi: 10.1002/tea.20057 CrossRefGoogle Scholar
  45. Mehalik MM, Doppelt Y, Schunn CD (2008) Middle-school science through design-based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. J Eng Educ 97(1):71–85Google Scholar
  46. National Research Council (1996) National science education standards. National Academy Press, Washington, DCGoogle Scholar
  47. Norman O, Ault CR Jr, Bentz B, Meskimen L (2001) The black–white “achievement gap” as a perennial challenge of urban science education: a sociocultural and historical overview with implications for research and practice. J Res Sci Teach 38(10):1101–1114. doi: 10.1002/tea.10004 CrossRefGoogle Scholar
  48. O’Neill T, Calabrese Barton A (2005) Uncovering student ownership in science learning: the making of a student created mini-documentary. Sch Sci Math 105(6):292–301Google Scholar
  49. Palincsar AS, Herrenkohl LR (2002) Designing collaborative learning contexts. Theory Pract 41(1):26–32. doi: 10.1207/s15430421tip4101_5 Google Scholar
  50. Penner DE, Lehrer R, Schauble L (1998) From physical models to biomechanics: a design-based modeling approach. J Learn Sci 7(3/4):429–449. doi: 10.1207/s15327809jls0703&4_6 CrossRefGoogle Scholar
  51. Pine J, Aschbacher P, Roth E, Jones M, McPhee C, Martin C, Phelps S, Kyle T, Foley B (2006) Fifth graders’ science inquiry abilities: a comparative study of students in hands-on and textbook curricula. J Res Sci Teach 43(5):467–484. doi: 10.1002/tea.20140 CrossRefGoogle Scholar
  52. Puntambekar S, Kolodner JL (2005) Toward implementing distributed scaffolding: helping students learn science from design. J Res Sci Teach 42(2):185–217. doi: 10.1002/tea.20048 CrossRefGoogle Scholar
  53. Raghavan K, Sartoris ML, Zimmerman C (2002) Impact of model-centered instruction on student learning, Annual Meeting of the National Association of Research in Science Teaching (NARST), New Orleans, LAGoogle Scholar
  54. Renner JW, Stafford DG, Coffia WJ, Kellogg DH, Weber MC (1973) An evaluation of the science curriculum improvement study. Sch Sci Math 73(4):291–318CrossRefGoogle Scholar
  55. Roth W-M (2001) Learning science through technological design. J Res Sci Teach 38(7):768–790. doi: 10.1002/tea.1031 CrossRefGoogle Scholar
  56. Roth W-M, Tobin K, Ritchie S (2001) Re/Constructing elementary science. Peter Lang Publishing, New YorkGoogle Scholar
  57. Sadler PM, Coyle HP, Schwartz M (2000) Engineering competitions in the middle school classroom: key elements in developing effective design challenges. J Learn Sci 9(3):299–327. doi: 10.1207/S15327809JLS0903_3 CrossRefGoogle Scholar
  58. Schauble L, Klopfer LE, Raghavan K (1991) Students’ transition from an engineering model to a science model of experimentation. J Res Sci Teach 18(9):859–882. doi: 10.1002/tea.3660280910 CrossRefGoogle Scholar
  59. Schauble L, Glaser R, Duschl RA, Schulze S, John J (1995) Students’ understanding of the objectives and procedures of experimentation in the science classroom. J Learn Sci 4(2):131–166. doi: 10.1207/s15327809jls0402_1 CrossRefGoogle Scholar
  60. Seiler G (2001) Reversing the “standard” direction: science emerging from the lives of African American students. J Res Sci Teach 38(9):1000–1014. doi: 10.1002/tea.1044 CrossRefGoogle Scholar
  61. Seiler G, Tobin K, Sokolic J (2001) Design, technology, and science: sites for learning, resistance, and social reproduction in urban schools. J Res Sci Teach 38(7):746–767. doi: 10.1002/tea.1030 CrossRefGoogle Scholar
  62. Sirin SR (2005) Socioeconomic status and academic achievement: a meta-analytic review of research. Rev Educ Res 75(3):417–453. doi: 10.3102/00346543075003417 CrossRefGoogle Scholar
  63. Toth EE, Klahr D, Chen Z (2000) Bridging research and practice: a cognitively based classroom intervention for teaching experimentation skills to elementary school children. Cogn Instr 18(4):423–459. doi: 10.1207/S1532690XCI1804_1 CrossRefGoogle Scholar
  64. Tschirgi JE (1980) Sensible reasoning: a hypothesis about hypotheses. Child Dev 51(1):1–10. doi: 10.2307/1129583 CrossRefGoogle Scholar
  65. Ulrich KT, Eppinger SD (2004) Product design and development, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  66. Waxman HC, Huang S-YL, Padron YN (1995) Investigating the pedagogy of poverty in inner-city middle level schools. Res Middle Lev Educ 18(2):1–22Google Scholar
  67. Wilson MR, Bertenthal MW (eds) (2006) Systems for state science assessment. The National Academies Press, Washington, DCGoogle Scholar
  68. Zimmerman C, Raghavan K, Sartoris ML (2003) The impact of the MARS curriculum on students’ ability to coordinate theory and evidence. Int J Sci Educ 25(10):1247–1271. doi: 10.1080/0950069022000038303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eli M. Silk
    • 1
  • Christian D. Schunn
    • 1
  • Mari Strand Cary
    • 2
  1. 1.Learning Research & Development CenterUniversity of PittsburghPittsburghUSA
  2. 2.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations