On the Entropy of Multidimensional Multiplicative Integer Subshifts


A multiplicative integer subshift \(X_\Omega \) derived from the subshift \(\Omega \) is invariant under multiplicative integer action, which is closely related to the level set of multiple ergodic average. The complexity of \(X_{\Omega }\) is usually measured by entropy (or box dimension). This work concerns on two types of multi-dimensional multiplicative integer subshifts (MMIS) with different coupling constraints, and then obtains their entropy formulae.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2), 309–319 (1965)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ban, J.C., Lin, S.S.: Patterns generation and transition matrices in multi-dimensional lattice models. Discret. Contin. Dyn. Syst. A 13(3), 637–658 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Ban, J.C., Lin, S.S., Lin, Y.H.: Patterns generation and spatial entropy in two dimensional lattice models. Asian J. Math. 10(3), 497–534 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ban, J.C., Hu, W.G., Lin, S.S.: Pattern generation problems arising in multiplicative integer systems. Ergod. Theor. Dyn. Syst. 39, 1234–1260 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Barreira, L.: Dimension and Recurrence in Hyperbolic Dynamics, vol. 272. Springer, Berlin (2008)

    Google Scholar 

  6. 6.

    Bourgain, J.: Double recurrence and almost sure convergence. J. Reine. Angew. Math. 404, 140–161 (1990)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Boyle, M., Pavlov, R., Schraudner, M.: Multidimensional sofic shifts without separation and their factors. Trans. Am. Math. Soc. 362, 4617–4653 (2010)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Carinci, G., Chazottes, J.R., Giardinà, C., Redig, F.: Nonconventional averages along arithmetic progressions and lattice spin systems. Indag. Math. 23(3), 589–602 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chazottes, J.R., Redig, F.: Thermodynamic formalism and large deviations for multiplication-invariant potentials on lattice spin systems. Electron. J. Probab. 19, 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Chen, J.Y., Chen, Y.J., Hu, W.G., Lin, S.S.: Spatial chaos of Wang tiles with two symbols. J. Math. Phys. 57, 637–658 (2015)

    MathSciNet  Google Scholar 

  12. 12.

    Chow, S.N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random. Comput. Dyn. 4, 109–178 (1996)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Conze, J.P., Lesigne, E.: Théoremes ergodiques pour des mesures diagonales. Bull. Soc. Math. Fr. 112, 143–175 (1984)

    Article  Google Scholar 

  14. 14.

    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York-London-Sydney (2003)

    Google Scholar 

  15. 15.

    Fan, A.H.: Some aspects of multifractal analysis. Springer. Geom. Funct. Anal. 88, 115–145 (2014)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Fan, A.H., Liao, L., Ma, J.H.: Level sets of multiple ergodic averages. Monatsh. Math. 168, 17–26 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fan, A.H., Liao, L., Wu, M.: Multifractal analysis of some multiple ergodic averages in linear Cookie–Cutter dynamical systems. Math. Z. 290(1–2), 63–81 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Fan, A.H., Schmeling, J., Wu, M.: Multifractal analysis of some multiple ergodic averages. Adv. Math. 295, 271–333 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Furstenberg, H., Katznelson, Y., Ornstein, D.: The ergodic theoretical proof of Szemerédi’s theorem. Bull. Am. Math. Soc. 7, 527–552 (1982)

    Article  Google Scholar 

  21. 21.

    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171, 2011–2038 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. Ann. Math. 161, 397–488 (2005)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kenyon, R., Peres, Y., Solomyak, B.: Hausdorff dimension of the multiplicative golden mean shift. C. R. Acad. Sci. Paris. 349, 625–628 (2011)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kenyon, R., Peres, Y., Solomyak, B.: Hausdorff dimension for fractals invariant under multiplicative integers. Ergod. Theor. Dyn. Syst. 32, 1567–1584 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Mandelbrot, B.: Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris. 278, 355–358 (1974)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Markley, N.G., Paul, M.E.: Maximal measures and entropy for \(Z^{\nu }\) subshift of finite type. Class. Mech. Dyn. Syst. 70, 135–157 (1979)

    MathSciNet  Google Scholar 

  27. 27.

    Markley, N.G., Paul, M.E.: Matrix subshifts for \(Z^{\nu }\) symbolic dynamics. Proc. Lond. Math. Soc. 43, 251–272 (1981)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Peres, Y., Schmeling, J., Seuret, S., Solomyak, B.: Dimensions of some fractals defined via the semigroup generated by 2 and 3. Isr. J. Math. 199(2), 687–709 (2014)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Application. University of Chicago Press, Chicago (1997)

    Google Scholar 

  30. 30.

    Pesin, Y., Weiss, H.: The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7, 89–106 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Pollicott, M.: A nonlinear transfer operator theorem. J. Stat. Phys. 166(3–4), 516–524 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Walters, P.: An Introduction to Ergodic Theory. Springer-Verlag, New York (1982)

    Google Scholar 

  33. 33.

    Ward, T.: Automorphisms of \(\mathbb{Z}^{d}\)-subshifts of finite type. Indag. Math. 5(4), 495–504 (1994)

    MathSciNet  Article  Google Scholar 

Download references


The authors wish to express their gratitude to the editor and the anonymous referees for their careful reading and useful suggestions, which make significant improvements of this work.

Author information



Corresponding author

Correspondence to Wen-Guei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ban is partially supported by the Ministry of Science and Technology, ROC (Contract MOST 107-2115-M-259 -001 -MY2 and 107-2115-M-390 -002 -MY2). Hu is partially supported by the National Natural Science Foundation of China (Grant 11601355)

Communicated by Alessandro Giuliani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ban, JC., Hu, WG. & Lai, GY. On the Entropy of Multidimensional Multiplicative Integer Subshifts. J Stat Phys 182, 31 (2021). https://doi.org/10.1007/s10955-021-02703-7

Download citation


  • Entropy
  • Multiplicative integer subshift
  • Multiple ergodic average
  • Box dimension