Effect of Lattice Inhomogeneity on Collapsed Phases of Semi-stiff ISAW Polymers


We investigate semi-stiff interacting self-avoiding walks on the square lattice with random impurities. The walks are simulated using the flatPERM algorithm and the inhomogeneity is realised as a random fraction of the lattice that is unavailable to the walks. We calculate several thermodynamic and metric quantities to map out the phase diagram and look at how the amount of disorder affects the properties of each phase. On a homogeneous lattice this model has an extended phase and two distinct collapsed phases, globular and crystalline, which differ in the anisotropy of the walks. By adding impurities to the lattice we notice a degree of swelling of the walks for all phases that is commensurate with the fraction of the lattice that is removed. Importantly, the crystal phase disappears with the addition of impurities for sufficiently long walks. For finite length walks we demonstrate that competition between the size of the average spaces free of impurities and the size of the collapsed polymer describes the crossover between the homogeneous lattice and the impurity dominated situation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Aizenman, M., Wehr, J.: Rounding of first-order phase transitions in systems with quenched disorder. Phys. Rev. Lett. 62, 2503–2506 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Barat, K., Karmakar, S.N., Chakrabarti, B.K.: Self-avoiding walk connectivity constant and theta point on percolating lattices. J. Phys. A 24(4), 851–860 (1991)

    ADS  Article  Google Scholar 

  3. 3.

    Bastolla, U., Grassberger, P.: Phase transitions of single semistiff polymer chains. J. Stat. Phys. 89(5), 1061–1078 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    Bedini, A., Owczarek, A.L., Prellberg, T.: The role of three-body interactions in two-dimensional polymer collapse. J. Phys. A 49(1), 214001 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. Ann. Inst. H Poincaré Probab. Stat. 46(2), 414–441 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Blavatska, V., Janke, W.: Scaling behavior of self-avoiding walks on percolation clusters. Europhys. Lett. 82(6), 66006 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    Blavatska, V., von Ferber, C., Folk, R., Holovatch, Y.: Renormalization group approaches to polymers in disordered media. In: Chakrabarti, B.K. (ed.) Statistics of Linear Polymers in Disordered Media, pp. 103–147. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  8. 8.

    Blote, H.W.J., Nienhuis, B.: Critical behaviour and conformal anomaly of the O(n) model on the square lattice. J. Phys. A 22(9), 1415 (1989)

  9. 9.

    Brak, R., Nidras, P.P., Owczarek, A.L.: Cluster structure of collapsing polymers. J. Stat. Phys. 91, 75–93 (1998)

    Article  Google Scholar 

  10. 10.

    Chakrabarti, B.K. (ed.): Statistics of Linear Polymers in Disordered Media. Elsevier Science, Amsterdam (2005)

  11. 11.

    Dhar, D., Singh, Y.: Linear and branched polymers on fractals. In: Chakrabarti, B.K. (ed.) Statistics of Linear Polymers in Disordered Media, pp. 149–194. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  12. 12.

    Doukas, J., Owczarek, A.L., Prellberg, T.: Identification of a polymer growth process with an equilibrium multicritical collapse phase transition: the meeting point of swollen, collapsed, and crystalline polymers. Phys Rev E 82, 31 (2010)

    Article  Google Scholar 

  13. 13.

    Duplantier, B., Saleur, H.: Exact tricritical exponents for polymers at the \(\theta \) point in two dimensions. Phys. Rev. Lett. 59, 539–542 (1987)

    ADS  Article  Google Scholar 

  14. 14.

    Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1953)

    Google Scholar 

  15. 15.

    Foster, D.P., Pinettes, C.: corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model. J. Phys. A 36(41), 10279–10298 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Goldschmidt, Y.Y., Shiferaw, Y.: Polymers with self-avoiding interaction in random medium: a localization-delocalization transition. Eur. Phys. J. 32(1), 87–95 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    Grassberger, P.: Recursive sampling of random walks: self-avoiding walks in disordered media. J. Phys. A 26(5), 1023–1036 (1993)

    ADS  Article  Google Scholar 

  18. 18.

    Grassberger, P.: Pruned-enriched rosenbluth method: simulations of \(\theta \) polymers of chain length up to 1 000 000. Phys. Rev. E 56, 3682–3693 (1997)

    ADS  Article  Google Scholar 

  19. 19.

    Harris, A.B.: Effect of random defects on the critical behaviour of Ising models. J. Phys. C 7(9), 1671–1692 (1974)

  20. 20.

    Hui, K., Berker, A.N.: Random-field mechanism in random-bond multicritical systems. Phys. Rev. Lett. 62, 2507–2510 (1989)

    ADS  Article  Google Scholar 

  21. 21.

    Janssen, H.K., Stenull, O.: Scaling behavior of linear polymers in disordered media. J. Phys. Rev. E 75, 20801 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    Kim, Y.: Renormalisation-group study of self-avoiding walks on the random lattice. J. Phys. C 16(8), 1345–1352 (1983)

    ADS  Article  Google Scholar 

  23. 23.

    Krawczyk, J., Owczarek, A., Prellberg, T.: Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers. Physica A 388(2), 104–112 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    Kremer, K.: Self-avoiding-walks (SAW’s) on diluted lattices, a Monte Carlo analysis. Z. Phys. B 45(2), 149–152 (1981)

    ADS  Article  Google Scholar 

  25. 25.

    Lam, P.: Exact series studies of self-avoiding walks on two-dimensional critical percolation clusters. J. Phys. A 23(16), L831 (1990)

    ADS  Article  Google Scholar 

  26. 26.

    Lee, S.B., Nakanishi, H.: Self-avoiding walks on randomly diluted lattices. Phys. Rev. Lett. 61, 2022–2025 (1988)

    ADS  Article  Google Scholar 

  27. 27.

    Meir, Y., Harris, A.B.: Self-avoiding walks on diluted networks. Phys. Rev. Lett. 63, 2819–2822 (1989)

    ADS  Article  Google Scholar 

  28. 28.

    Meirovitch, H., Chang, I.S., Shapir, Y.: Surface exponents of trails in two dimensions at tricriticality: computer simulation study. Phys. Rev. A 40, 2879–2881 (1989)

    ADS  Article  Google Scholar 

  29. 29.

    Nakanishi, H., Lee, S.B.: Exact enumeration study of self-avoiding walks on two-dimensional percolation clusters. J. Phys. A 24(6), 1355–1361 (1991)

    ADS  Article  Google Scholar 

  30. 30.

    Nakanishi, H., Moon, J.: Self-avoiding walk on critical percolation cluster. Physica A 191(1), 309–312 (1992)

    ADS  Article  Google Scholar 

  31. 31.

    Newman, M.E.J., Ziff, R.M.: Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85, 4104–4107 (2000)

    ADS  Article  Google Scholar 

  32. 32.

    Ordemann, A., Porto, M., Roman, H.E., Havlin, S., Bunde, A.: Multifractal behavior of linear polymers in disordered media. Phys. Rev. E 61, 6858–6865 (2000)

    ADS  Article  Google Scholar 

  33. 33.

    Owczarek, A.L., Prellberg, T.: The collapse point of interacting trails in two dimensions from kinetic growth simulations. J. Stat. Phys. 79(5), 951–967 (1995)

    ADS  Article  Google Scholar 

  34. 34.

    Owczarek, A.L., Prellberg, T.: Collapse transition of self-avoiding trails on the square lattice. Physica A 373, 433–438 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    Prellberg, T., Krawczyk, J.: Flat histogram version of the pruned and enriched Rosenbluth method. Phys. Rev. Lett. 92, 120602 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and flory approximation. J. Phys. 45(3), 389–394 (1984)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Rintoul, M.D., Moon, J., Nakanishi, H.: Statistics of self-avoiding walks on randomly diluted lattices. Phys. Rev. E 49, 2790–2803 (1994)

    ADS  Article  Google Scholar 

  38. 38.

    Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23(2), 356–359 (1955)

    ADS  Article  Google Scholar 

  39. 39.

    Roy, A., Blumen, A.: Theory of self-avoiding walks on percolation fractals. J. Stat. Phys. 59(5–6), 1581–1588 (1990)

    ADS  Article  Google Scholar 

  40. 40.

    Sahimi, M.: Self-avoiding walks on percolation clusters. J. Phys. A 17(7), L379–L384 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Shapir, Y., Oono, Y.: Walks, trials and polymers with loops. J. Phys. A 17(2), L39 (1984)

    ADS  Article  Google Scholar 

  42. 42.

    Watson, P.G.: Critical behaviour of inhomogeneous lattices. J. Phys. C 2(6), 948–958 (1969)

    ADS  Article  Google Scholar 

Download references


Financial support from the Australian Research Council via its Discovery Projects scheme (DP160103562) is gratefully acknowledged by the authors.

Author information



Corresponding author

Correspondence to C. J. Bradly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Yariv Kafri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bradly, C.J., Owczarek, A.L. Effect of Lattice Inhomogeneity on Collapsed Phases of Semi-stiff ISAW Polymers. J Stat Phys 182, 27 (2021). https://doi.org/10.1007/s10955-021-02701-9

Download citation


  • Polymer collapse
  • Inhomogeneous lattice
  • Self-avoiding walks