Fluctuation Theory in the Boltzmann–Grad Limit


We develop a rigorous theory of hard-sphere dynamics in the kinetic regime, away from thermal equilibrium. In the low density limit, the empirical density obeys a law of large numbers and the dynamics is governed by the Boltzmann equation. Deviations from this behaviour are described by dynamical correlations, which can be fully characterized for short times. This provides both a fluctuating Boltzmann equation and large deviation asymptotics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    For previous quantitative investigations of the correlation error, we refer to [14, 26].


  1. 1.

    Alexander, R.K.: The infinite hard sphere system. Ph.D. Thesis, Dep. of Math., University of California at Berkeley (1975)

  2. 2.

    van Beijeren, H., Lanford III, O.E., Lebowitz, J.L., Spohn, H.: Equilibrium time correlation functions in the low-density limit. J. Stat. Phys. 22, 2 (1980)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys 87, 593–636 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Bodineau, T., Gallagher, I., Saint-Raymond, L.: From hard sphere dynamics to the Stokes–Fourier equations: an \(L^2\) analysis of the Boltzmann-Grad limit. Ann. PDE 3(1), 2 (2017)

    Article  Google Scholar 

  5. 5.

    Bodineau, T., Gallagher, I., Saint-Raymond, L., Simonella, S.: One-sided convergence in the Boltzmann–Grad limit. Ann. Fac. Sci. 27(5), 985–1022 (2018)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bodineau, T., Gallagher, I., Saint–Raymond, L., Simonella, S.: Fluctuating Boltzmann equation and large deviations for a hard sphere gas. In preparation

  7. 7.

    Bouchet, F.: Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox. arXiv:2002.10398

  8. 8.

    Cercignani, C.: On the Boltzmann equation for rigid spheres. Transp. Theory Stat. Phys. 2, 211–225 (1972)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    Book  Google Scholar 

  10. 10.

    Cohen, E.G.D.: Cluster expansions and the hierarchy. I. Non-equilibrium distribution functions. Physica 28, 1045–1059 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (2010)

    Book  Google Scholar 

  12. 12.

    Derrida, B.: Microscopic versus macroscopic approaches to non-equilibrium systems. J. Stat. Mech. 2011, P01030 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ernst, M.H., Cohen, E.G.D.: Nonequilibrium fluctuations in \(\mu \) space. J. Stat. Phys. 25, 1 (1981)

    ADS  Article  Google Scholar 

  14. 14.

    Gallagher, I., Saint Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. EMS, Zurich (2014)

    Book  Google Scholar 

  15. 15.

    Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of Ergodic, Qualitative and Statistical Theory of Motion. Springer-Verlag, New York (2004)

    Book  Google Scholar 

  16. 16.

    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kac, M.: Foundations of kinetic theory. In : Proceedings of The third Berkeley symposium on mathematical statistics and probability. Berkeley and Los Angeles, California: University of California Press, pp. 171–197 (1956)

  18. 18.

    Kac, M., Logan, J.: Fluctuations and the Boltzmann equation. Phys. Rev. A 13, 458–470 (1976)

    ADS  Article  Google Scholar 

  19. 19.

    van Kampen, N.G.: Fluctuations in Boltzmann’s equation. Phys. Rev. 50A(4), 237 (1974)

    Google Scholar 

  20. 20.

    King, F.: BBGKY Hierarchy for Positive Potentials. Ph.D. Thesis, Dep. of Math., Univ. California, Berkeley (1975)

  21. 21.

    Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics. Springer-Verlag, Berlin (1975)

    Google Scholar 

  22. 22.

    Léonard, C.: On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations. Probab. Theory Relat. Fields 101, 1–44 (1995)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Méléard, S.: Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations. Stoch. Stoch. Rep. 63(3–4), 195–225 (1998)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Poghosyan, O., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 050309 (2009)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26, 2 (2014)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Inventiones 207(3), 1135–1237 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Rezakhanlou, F.: Equilibrium fluctuations for the discrete Boltzmann equation. Duke Math. J. 93(2), 257–288 (1998)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Rezakhanlou, F.: Large deviations from a kinetic limit. Ann. Probab. 26(3), 1259–1340 (1998)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Ruelle, D.: Statistical Mechanics. Rigorous Results. W.A. Benjamin Inc., New York (1969)

    MATH  Google Scholar 

  30. 30.

    Spohn, H.: Fluctuations around the Boltzmann equation. J. Stat. Phys. 26, 2 (1981)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Spohn, H.: Fluctuation theory for the Boltzmann equation. In: Lebowitz, J.L., Montroll, E.W. (eds.) Nonequilibrium Phenomena I: The Boltzmann Equation. North-Holland, Amsterdam (1983)

    Google Scholar 

  32. 32.

    Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Heidelberg (1991)

    Book  Google Scholar 

Download references


We are very grateful to H. Spohn, F. Bouchet, F. Rezakhanlou, G. Basile, D. Benedetto, and L. Bertini for many enlightening discussions on the subjects treated in this text. T.B. acknowledges the support of ANR-15-CE40-0020-01 Grant LSD.

Author information



Corresponding author

Correspondence to Laure Saint-Raymond.

Additional information

This paper is dedicated to Joel Lebowitz for his 90th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Eric A. Carlen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bodineau, T., Gallagher, I., Saint-Raymond, L. et al. Fluctuation Theory in the Boltzmann–Grad Limit. J Stat Phys 180, 873–895 (2020). https://doi.org/10.1007/s10955-020-02549-5

Download citation


  • Kinetic theory
  • Hard sphere dynamics
  • Low density limit
  • Boltzmann equation
  • Fluctuations
  • Large deviations
  • cumulants