Towards a Mathematical Model of the Brain

Abstract

This article presents an idealized mathematical model of the cerebral cortex, focusing on the dynamical interaction of neurons. The author proposes a network architecture more consistent with neuroanatomy than in previous studies, borrows ideas from nonequilibrium statistical mechanics and calls attention to the fact that the brain is a large and complex dynamical system. The ideas proposed are illustrated with a realistic model of the visual cortex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Baddeley, R., Abbott, L.F., Booth, M.C.A., Sengpiel, F., Freeman, T., Wakeman, E.A., Rolls, E.T.: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R Soc. Lond. B 264, 1775–1783 (1997)

    ADS  Google Scholar 

  2. 2.

    Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M., Cowey, A.: Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb. Cortex 2, 295–309 (1992)

    Google Scholar 

  3. 3.

    Binzegger, T., Douglas, R., Martin, K.: Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 22, 1071–78 (2009)

    Google Scholar 

  4. 4.

    Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15(3), 509–538 (2003)

    MATH  Google Scholar 

  5. 5.

    Bressloff, P.: Waves in Neural Media: From single neurons to neural fields. Lecture Notes in Math. Modeling in the Life Sciences, Springer (2014)

  6. 6.

    Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11(7), 1621–1671 (1999)

    Google Scholar 

  7. 7.

    Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 3, 183–208 (2000)

    MATH  Google Scholar 

  8. 8.

    Brunel, N., Wang, X.J.: What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90(1), 415–430 (2003)

    Google Scholar 

  9. 9.

    Buice, M.A., Cowan, J.: Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol. 99(2–3), 53–86 (2009)

    Google Scholar 

  10. 10.

    Burns, S.P., Xing, D., Shapley, R.M.: Gamma-band activity in the local field potential of V1 cortex: a “clock or filtered noise? J. Neurosci. 31, 9658–64 (2011)

    Google Scholar 

  11. 11.

    Cai, D., Tao, L., Rangan, A.V., McLaughlin, D.W., et al.: Kinetic theory for neuronal network dynamics. Commun. Math. Sci. 4(1), 97–127 (2006)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Cardin, J.A.: Snapshots of the brain in action: local circuit operations through the lens of oscillations. J. Neurosci. 36, 10496–10504 (2006)

    Google Scholar 

  13. 13.

    Chariker, L., Young, L.-S.: Emergent spike patterns in neuronal populations. J. Comput. Neurosci. 38(1), 203–220 (2015)

    MATH  Google Scholar 

  14. 14.

    Chariker, L., Shapley, R., Young, L.-S.: Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex. J. Neurosci. 36, 12368–12384 (2016)

    Google Scholar 

  15. 15.

    Chariker, L., Shapley, R., Young, L.-S.: Rhythm and synchrony in a cortical network model. J. Neurosci. 38(40), 8621–8634 (2018)

    Google Scholar 

  16. 16.

    Chariker, L., Shapley, R., Young, L.-S.: Contrast response in a comprehensive network model of V1. Under Review

  17. 17.

    De Groot, S., Mazur, P.: Nonequilibrium Thermodynamics. North Holland, Amsterdam (1962)

    MATH  Google Scholar 

  18. 18.

    Eckmann, J.P., Young, L.-S.: Nonequilibrium energy profiles for a class of 1D models. Commun. Math. Phys. 262(1), 237–267 (2006)

    ADS  MATH  Google Scholar 

  19. 19.

    Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41 (1964)

    Google Scholar 

  20. 20.

    Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702 (1989)

    ADS  Google Scholar 

  21. 21.

    Heeger, D.: Theory of cortical function. Proc. Natl. Acad. Sci. USA 114, 1773–1782 (2018)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Henrie, J.A., Shapley, R.: Lfp power spectra in v1 cortex: the graded effect of stimulus contrast. J. Neurophysiol. 94(1), 479–490 (2005)

    Google Scholar 

  23. 23.

    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–44 (1952)

    Google Scholar 

  24. 24.

    Holmgren, C., Harkany, T., Svennenfors, B., Zilberter, Y.: Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139–53 (2003)

    Google Scholar 

  25. 25.

    Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  26. 26.

    Joglekar, M., Mejias, J., Yang, G.R., Wang, X.-J.: Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98(1), 222–234.e8 (2018)

    Google Scholar 

  27. 27.

    Koch, C.: Biophysics of Computation. Oxford Univ Press, Oxford (1999)

    Google Scholar 

  28. 28.

    Li, Y., Chariker, L., Young, L.-S.: How well do reduced models capture the dynamics in models of interacting neurons? J. Math. Biol. 78, 83 (2018). https://doi.org/10.1007/s00285-018-1268-0

    MathSciNet  MATH  Google Scholar 

  29. 29.

    McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A Neuronal Network Model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proc. Natl. Acad. Sci. USA 97, 8087–8092 (2000)

    ADS  Google Scholar 

  30. 30.

    Ostojic, S.: Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 106, 361–373 (2011)

    Google Scholar 

  31. 31.

    Oswald, A.M., Reyes, A.: Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J. Neurophysiol. 99, 2998–3008 (2008)

    Google Scholar 

  32. 32.

    Rangan, A.V., Young, L.-S.: Emergent dynamics in a model of visual cortex. J. Comput. Neurosci. 35, 155–167 (2013)

    MathSciNet  Google Scholar 

  33. 33.

    Rangan, A.V., Young, L.-S.: Dynamics of spiking neurons: between homogeneity and synchrony. J. Comput. Neurosci. 34(3), 433–460 (2013)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Tso, D.Y., Frostig, R.D., Lieke, E.E., Grinvald, A.: Functional organization of primate visual cortex revealed by high resolution optimal imaging. Science 249(4967), 417–420 (1990)

    ADS  Google Scholar 

  35. 35.

    Ungerleider, L.G., Desimone, R.: Cortical connections of visual area MT in the macaque. J. Comput. Neurol. 248(2), 190–222 (1986)

    Google Scholar 

  36. 36.

    Ungerleider, L.G., Galkin, T.W., Desimone, R., Gattass, R.: Cortical connections of area V4 in the macaque. Cereb. Cortex 3, 477–99 (2008)

    Google Scholar 

  37. 37.

    van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits. Neural Comput. 10(6), 1321–1371 (1998)

    Google Scholar 

  38. 38.

    Wilson, H., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lai-Sang Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by NSF Grants 1734854 and 1901009.

Communicated by Ivan Corwin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Young, LS. Towards a Mathematical Model of the Brain. J Stat Phys 180, 612–629 (2020). https://doi.org/10.1007/s10955-019-02483-1

Download citation

Keywords

  • Cortical dynamics
  • Neuronal interaction
  • Nonequilibrium steady states
  • Visual cortex