Skip to main content
Log in

Cumulant Analysis of the Statistical Properties of a Deterministically Thermostated Harmonic Oscillator

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Usual approach to investigate the statistical properties of deterministically thermostated systems is to analyze the regime of the system motion. In this work the cumulant analysis is used to study the properties of the stationary probability distribution function of the deterministically thermostated harmonic oscillators. This approach shifts attention from the investigation of the geometrical properties of solutions of the systems to the studying a probabilistic measure. The cumulant apparatus is suitable for studying the correlations of dynamical variables, which allows one to reveal the deviation of the actual probabilistic distribution function from canonical one and to evaluate it. Three different thermostats, namely the Nosé–Hoover, Patra-Bhattacharya and Hoover–Holian ones, were investigated. It is shown that their actual distribution functions are non-canonical because of nonlinear coupling of the oscillators with thermostats. The problem of ergodicity of the deterministically thermostated systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  2. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  3. Patra, P.K., Bhattacharya, B.: A deterministic thermostat for controlling temperature using all degrees of freedom. J. Chem. Phys. 140, 064106 (2014)

    Article  ADS  Google Scholar 

  4. Hoover, W.G., Holian, B.L.: Kinetic moments method for the canonical ensemble distribution. Phys. Lett. A 211, 253–257 (1996)

    Article  ADS  Google Scholar 

  5. Kusnezov, D., Bulgac, A., Bauer, W., Kusnezov, D.: Canonical ensembles from Chaos. Ann. Phys. 204, 155–185 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  ADS  Google Scholar 

  7. Watanabe, H., Kobayashi, H.: Ergodicity of a thermostat family of the Nose–Hoover type. Phys. Rev. E 75, 040102(R) (2007)

    Article  ADS  Google Scholar 

  8. Patra, P.K., Bhattacharya, B.: An ergodic configurational thermostat using selective control of higher order temperatures J. Chem. Phys. 142, 194103-1-8 (2015)

  9. Samoletov, A., Vasiev, V.: Dynamic principle for ensemble control tools. J. Chem. Phys. 147, 204106 (2017)

    Article  ADS  Google Scholar 

  10. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nose oscillator: stability, order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of the Nose–Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184, 449–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Patra, P.K., Bhattacharya, B.: Nonergodicity of the Nose–Hoover chain thermostat in computationally achievable time. Phys. Rev. E 90, 043304 (2014)

    Article  ADS  Google Scholar 

  13. Hoover, W.G., Hoover, C.G.: Ergodicity of a time-reversibly thermostated harmonic oscillator and the 2014 Ian Snook Prize. CMST 20, 87–92 (2014)

    Article  Google Scholar 

  14. Hoover, W.G., Hoover, C.G., Isbister, D.J.: Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator. Phys. Rev. E 63, 026209-1-5 (2001)

  15. Patra, P.K., Sprott, J.C., Hoover, W.G., Hoover, C.G.: Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics. Mol. Phys. 113, 2863–2872 (2015)

    Article  ADS  Google Scholar 

  16. Hoover, W.G., Hoover, C.G.: Ergodicity of the Martyna–Klein–Tuckerman thermostat and the 2014 Ian Snook Prize. CMST 21, 5–10 (2015)

    Article  Google Scholar 

  17. Hoover, W.G., Sprott, J.C., Patra, P.K.: Ergodic time-reversible chaos for Gibbs canonical oscillator. Phys. Lett. A 379, 2935–2940 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Samoletov, A.A., Dettman, C.P., Chaplain, C.P.: Thermostats for slow configurational modes. J. Stat. Phys. 128, 1321–1336 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Malakhov, A.N.: Cumulant Analysis of Random Non-Gaussian Processes and their Transformation. Sovetskoe Radio, Moscow (1978). (in Russian)

    MATH  Google Scholar 

  20. Primak, S., Kontorovich, V., Lyandres, V.: Stochastic Methods and their Applications to Communications. Stochastic Differential Equations Approach. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  21. Kontorovich, V.: Applied statistical analysis for strange attractors and related problems. Math. Methods Appl. Sci. 30, 1705–1717 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hockney, R.W.: The potential calculation and some applications. Methods Comput. Phys. 9, 136–211 (1970)

    Google Scholar 

  23. Verlet, L.: Computer “experiment” on classical fluids. 1. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  ADS  Google Scholar 

  24. Lichtenberg, A.J., Liberman, M.A.: Regular and Stochastic Motion. Springer, New York (1983)

    Book  Google Scholar 

  25. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985)

  26. Thompson, J.M.T., Stewar, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)

    Google Scholar 

Download references

Acknowledgements

The author thanks A. Samoletov for interesting and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Artemov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A The Expressions that are Referenced in the Text

A The Expressions that are Referenced in the Text

The opening of the cumulant brackets used in the text.

$$\begin{aligned} \langle x^2\rangle= & {} \kappa _{2,0,0(,0)}+\kappa _{1,0,0(,0)}^2,\end{aligned}$$
(36)
$$\begin{aligned} \langle p^2\rangle= & {} \kappa _{0,2,0(,0)}+\kappa _{0,1,0(,0)}^2, \end{aligned}$$
(37)
$$\begin{aligned} \langle x,\zeta p\rangle= & {} \kappa _{1,1,1,0}+\kappa _{1,1,0,0}\kappa _{0,0,1,0} + \kappa _{1,0,1,0}\kappa _{0,1,0,0},\end{aligned}$$
(38)
$$\begin{aligned} \langle p,\xi x\rangle&= \kappa _{1,1,0,1}+\kappa _{0,1,0,1}\kappa _{1,0,0,0} + \kappa _{1,1,0,0}\kappa _{0,0,0,1}, \end{aligned}$$
(39)
$$\begin{aligned} \langle p^4\rangle&= \kappa _{0,4,0,0}+3 \kappa _{0,2,0,0}^2 + 4\kappa _{0,1,0,0}\kappa _{0,3,0,0}\nonumber \\&\quad +\, 6\,\kappa _{0,1,0,0}^2\kappa _{0,2,0,0} + \kappa _{0,1,0,0}^4, \end{aligned}$$
(40)
$$\begin{aligned} \langle x,\xi p^3\rangle&= \kappa _{1,3,0,1} + 3\kappa _{1,2,0,1}\kappa _{0,1,0,0} + \kappa _{1,3,0,0}\kappa _{0,0,0,1} \nonumber \\&\quad +\,3\kappa _{1,1,0,1}\kappa _{0,1,0,0}^2 + 3\kappa _{1,2,0,0}\kappa _{0,1,0,0}\kappa _{0,0,0,1} \nonumber \\&\quad +\,\kappa _{1,0,0,1}\kappa _{0,1,0,0}^3 + 3\kappa _{1,1,0,0}\kappa _{0,1,0,0}^2\kappa _{0,0,0,1} \nonumber \\&\quad +\, 3\kappa _{1,0,0,1}\kappa _{0,2,0,0}\kappa _{0,1,0,0} + 3\kappa _{1,1,0,0}\kappa _{0,1,0,1}\kappa _{0,1,0,0}, \end{aligned}$$
(41)

The example of the cumulants expressed in terms of the moments

$$\begin{aligned} \kappa _{0,2,0}&= \langle p,p\rangle = \langle p^2\rangle -\langle p\rangle ^2, \end{aligned}$$
(42)
$$\begin{aligned} \kappa _{1,1,1}&= \langle x,p,\zeta \rangle = \langle xp\zeta \rangle -\langle x\rangle \langle p\zeta \rangle - \langle p\rangle \langle x\zeta \rangle \nonumber \\&\quad -\,\langle \zeta \rangle \langle xp\rangle + 2\langle x\rangle \langle p\rangle \langle \zeta \rangle . \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemov, A.N. Cumulant Analysis of the Statistical Properties of a Deterministically Thermostated Harmonic Oscillator. J Stat Phys 174, 992–1010 (2019). https://doi.org/10.1007/s10955-019-02220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02220-8

Keywords

Navigation