Skip to main content
Log in

Mean Field Limit of Interacting Filaments for 3D Euler Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The 3D Euler equations, precisely local smooth solutions of class \(H^s\) with \(s>5/2\) are obtained as a mean field limit of finite families of interacting curves, the so called vortex filaments, described by means of the concept of 1-currents. This work is a continuation of a previous paper, where a preliminary result in this direction was obtained, with the true Euler equations replaced by a vector valued non linear PDE with a mollified Biot–Savart relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berselli, L.C., Bessaih, H.: Some results for the line vortex equation. Nonlinearity 15(6), 1729–1746 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Berselli, L.C., Gubinelli, M.: On the global evolution of vortex filaments, blobs, and small loops in 3D ideal flows. Commun. Math. Phys. 269(3), 693–713 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bessaih, H., Flandoli, F.: Limit behaviour of a dense collection of vortex filaments. Math. Models Methods Appl. Sci. 14(2), 189–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessaih, H., Wijeratne, C.: Fractional Brownian motion and an application to fluids. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics, pp. 37–52. Springer (2015)

  5. Bessaih, H., Gubinelli, M., Russo, F.: The evolution of a random vortex filament. Ann. Probab. 33(5), 1825–1855 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessaih, H., Coghi, M., Flandoli, F.: Mean field limit of interacting filaments and vector valued non-linear PDEs. J. Stat. Phys. 166(5), 1276–1309 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bourguignon, J.P., Brezis, H.: Remarks on the Euler equations. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzezniak, Z., Gubinelli, M., Neklyudov, M.: Global solutions of the random vortex filament equation. Nonlinearity 26(9), 2499–2514 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys. 83(4), 517–535 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dobrushin, R.L.: Vlasov equation. Funct. Anal. Appl. 13, 115–123 (1979)

    Article  MATH  Google Scholar 

  11. Flandoli, F.: A probabilistic description of small scale structures in 3D fluids. Ann. Inst. Henri Poincaré, Probab. Stat. 38(2), 207–228 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Flandoli, F., Gubinelli, M.: The Gibbs ensembles of vortex filaments. Probab. Theory Relat. Fields 122(3), 317–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations I: Cartesian Currents. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  16. Leonard, A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559 (1985)

    Article  ADS  Google Scholar 

  17. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Incompressible Models, vol. 1. Oxford Univ Press, Oxford (1996)

  18. Lions, P.L.: On Euler equations and statistical physics, Cattedra Galileiana [Galileo Chair]. Scuola Normale Superiore, Classe di Scienze, Pisa (1998)

  19. Lions, P.L., Majda, A.: Equilibrium statistical theory for nearly parallel vortex filaments. Commun. Pure Appl. Math. 53, 76–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Majda, A.J., Bertozzi, A.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  21. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Noviscous Fluids. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their careful reading and valuable remarks which helped improving this paper. Hakima Bessaih’s research was partially supported by NSF Grant DMS-1418838. Franco Flandoli was partially supported by the PRIN 2015 project “Deterministic and stochastic evolution equations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakima Bessaih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessaih, H., Coghi, M. & Flandoli, F. Mean Field Limit of Interacting Filaments for 3D Euler Equations. J Stat Phys 174, 562–578 (2019). https://doi.org/10.1007/s10955-018-2189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2189-4

Keywords

Mathematics Subject Classification

Navigation