Skip to main content
Log in

Fick and Fokker–Planck Diffusion Law in Inhomogeneous Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un–oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker–Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick’s law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non–homogeneous Einstein relation and the possibility of uphill diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andreucci, D., Bellaveglia, D., Cirillo, E.N.M.: A model for enhanced and selective transport through biological membranes with alternating pores. Math. Biosci. 257, 42–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bian, N.H., Garcia, O.E.: Structures, profile consistency, and transport scaling in electrostatic convection. Phys. Plasmas 12, 042307 (2005)

    Article  ADS  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  5. Cirillo, E.N.M., Colangeli, M.: Stationary uphill currents in locally perturbed zero range processes. Phys. Rev. E 96, 052137 (2017)

    Article  ADS  Google Scholar 

  6. Cirillo, E.N.M., Krehel, O., Muntean, A., van Santen, R.: A lattice model of reduced jamming by barrier. Phys. Rev. E 94, 042115 (2016)

    Article  ADS  Google Scholar 

  7. Cirillo, E.N.M., Krehel, O., Muntean, A., van Santen, R., Sengar, A.: Residence time estimates for asymmetric simple exclusion dynamics on strips. Physica A 442, 436–457 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cirillo, E.N.M., De Bonis, I., Muntean, A., Richardson, O.: Driven particle flux through a membrane: two-scale asymptotics of a diffusion equation with polynomial drift. arXiv:1804.08392 (2018)

  9. Colangeli, M., De Masi, A., Presutti, E.: Latent heat and the Fourier law. Phys. Lett. A 380, 1710–1713 (2016)

    Article  ADS  Google Scholar 

  10. Colangeli, M., De Masi, A., Presutti, E.: Particle models with self-sustained current. J. Stat. Phys. 167, 1081–1111 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Colangeli, M., De Masi, A., Presutti, E.: Microscopic models for uphill diffusion. J. Phys. A 50, 435002 (2017)

    Article  MATH  Google Scholar 

  12. Colangeli, M., Giardinà, C., Giberti, C., Vernia, C.: Non-equilibrium 2D Ising model with stationary uphill diffusion. Phys. Rev. E 97, 030103(R) (2018)

    Article  ADS  Google Scholar 

  13. Collins, R., Carson, S.R., Matthew, J.A.D.: Diffusion equation for one-dimensional unbiased hopping. Am. J. Phys. 65, 230 (1997)

    Article  ADS  Google Scholar 

  14. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  15. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  16. Ghosh, K., Dill, K.A., Inamdar, M.M., Seitaridou, E., Phillips, R.: Teaching the principles of statistical dynamics. Am. J. Phys. 74, 123 (2006)

    Article  ADS  Google Scholar 

  17. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys. Lett. 54, 28–34 (2001)

    Article  ADS  Google Scholar 

  19. Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  20. Landsberg, P.T.: $D{grad}\, v$ or ${grad}(Dv)$? J. Appl. Phys. 56, 1119 (1984)

    Article  ADS  Google Scholar 

  21. Rassoul-Agha, F., Seppäläinen, T.: A Course on Large Deviations with an Introduction to Gibbs Measures. Graduate Studies in Mathematics, vol. 162. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  22. Sattin, F.: Fick’s law and Fokker-Planck equation in inhomogeneous environments. Phys. Lett. A 372, 3921–3945 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Schnitzer, M.J., Block, S.M., Berg, H.C., Purcell, E.M.: Strategies for chemotaxis. Symp. Soc. Gen. Microbiol. 46, 15 (1990)

    Google Scholar 

  25. Sniekers, Y.H., van Donkelaar, C.C.: Determining diffusion coefficients in inhomegeneous tissue using fluorescence recovery after photobleaching. Biophys. J. 89, 1302–1307 (2005)

    Article  Google Scholar 

  26. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)

    Book  MATH  Google Scholar 

  27. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  28. van Milligen, BPh, Bons, P.D., Carreras, B.A., Sánchez, R.: On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur. J. Phys. 26, 913–925 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. M. Cirillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreucci, D., Cirillo, E.N.M., Colangeli, M. et al. Fick and Fokker–Planck Diffusion Law in Inhomogeneous Media. J Stat Phys 174, 469–493 (2019). https://doi.org/10.1007/s10955-018-2187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2187-6

Keywords

Mathematics Subject Classification

Navigation