Skip to main content
Log in

Transition of Spatial Patterns in an Interacting Turing System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a Turing-type reaction-diffusion system involving quadratic and cubic nonlinearities and numerically investigate the role of nonlinear terms in producing spots, stripes, labyrinths, hexagonal arrangement of spots, blotches and transitions among them. From our numerical experiments performed on a square domain with zero-flux boundary conditions, we observe that the system displays a form of multistability for which different stable spatial distribution of concentrations appear for a same set of control parameters depending upon the initial conditions. For varying values of model parameters both in the first- and the second-stage of simulations, we obtain a number of transition states that are found to be sensitive on the relative strength of the quadratic and cubic coupling terms. We obtain a graphical relationship among such model parameters at which the transitions take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R Soc. Lond B 237, 37 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Murray, J.D.: A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161 (1981)

    Article  MathSciNet  Google Scholar 

  3. Liu, R.T., Liaw, S.S., Maini, P.K.: Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. E 74, 011914 (2006)

    Article  ADS  Google Scholar 

  4. Bard, J.B.L.: A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 93, 363 (1981)

    Article  MathSciNet  Google Scholar 

  5. Murray, J.D.: Mathematical Biology, vol. I & II, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  6. Murray, J.D., Myerscough, M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339 (1991)

    Article  Google Scholar 

  7. Murray, J.D.: On pattern formation mechanism for lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B 295, 473 (1981)

    Article  ADS  Google Scholar 

  8. Nijhout, H.F.: A comprehensive model for color pattern formation in butterflies. Proc. R. Soc. Lond. B 239, 81 (1990)

    Article  ADS  Google Scholar 

  9. Sekimura, T., Madzvamuse, A., Wathen, A.J., Maini, P.K.: A model for color pattern formation in the butterfly wing of Papilio dardanus. Proc. R. Soc. Lond. B 267, 851 (2000)

    Article  MATH  Google Scholar 

  10. Kondo, S., Asai, R.: A reaction-diffusion wave on the marine angelfish Pomacanthus. Nature 376, 765 (1995)

    Article  ADS  Google Scholar 

  11. Asai, R.: Zebrafish Leopard gene as a component of the putative reaction-diffusion system. Mech. Dev. 89, 87 (1999)

    Article  Google Scholar 

  12. Shoji, H.: Origin of directionality in the fish stripe pattern. Dev. Dyn. 226, 627 (2003)

    Article  Google Scholar 

  13. Barrio, R.A.: Modeling the skin pattern of fishes. Phys. Rev. E 79, 031908 (2009)

    Article  ADS  Google Scholar 

  14. Liaw, S.S.: Turing model for the patterns of lady beetles. Phys. Rev. E 64, 041909 (2001)

    Article  ADS  Google Scholar 

  15. Ben-Jacob, E., et al.: Generic modeling of cooperative growth patterns of bacterial colonies. Nature (Landon) 368, 46 (1994)

    Article  ADS  Google Scholar 

  16. Tyson, R., Lubkin, S.R., Murray, J .D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. Ser. B 266, 299 (1999)

    Article  Google Scholar 

  17. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press Inc., London (1982)

    Google Scholar 

  18. Liaw, S.S.: Phyllotaxis: its geometry and dynamics. Phys. Rev. E 57, 4589 (1998)

    Article  ADS  Google Scholar 

  19. Röhrich, B., Parisi, J., Peinke, J., Rössler, O.E.: A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. Z. Phys. B 65, 259 (1986)

    Article  ADS  Google Scholar 

  20. Balkarei, Y.I., Grigoryants, A.V., Rzhanov, Y.A., Elinson, M.I.: Regenerative oscillations, spatial-temporal single pulses and static inhomogeneous structures in optically bistable semiconductors. Opt. Commun. 66, 161 (1988)

    Article  ADS  Google Scholar 

  21. Nozakura, T., Ikeuchi, S.: Spiral patterns on a differentially rotating galactic disk-Self-organized structures in galaxies. Astrophys. J. 279, 40 (1984)

    Article  ADS  Google Scholar 

  22. Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the universe. Astron. Astrophys. 288, 697 (1994)

    ADS  Google Scholar 

  23. Barrio, R.A., Varea, C., Araǵon, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interacting turing systems. Bull. Math. Biol. 61, 483 (1999)

    Article  MATH  Google Scholar 

  24. Leppnen, T., Karttunen, M., Barrio, R.A., Kaski, K.: Morphological transitions and bistability in Turing systems. Phys. Rev. E 70, 066202 (2004)

    Article  ADS  Google Scholar 

  25. Barrio, R.A.: Size-dependent symmetry breaking in models for morphogenesis. Phys. D 168, 61 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Aragón, J.L., et al.: Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Schneider, J.T.: Perfect stripes from a general Turing model in different geometries, PhD Thesis, Boise State University (2012)

  28. Aragón, J.L.: Spatial patterning in modified Turing systems: application to pigmentation patterns on marine fish. Forma 13, 213 (1998)

    Google Scholar 

  29. Werdelin, L., Olsson, L.: How the leopard got its spots: a phylogenetic view of the evolution of felid coat patterns. Biol. J. Linn. Soc. 62, 383 (1997)

    Article  Google Scholar 

  30. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610 (1991)

    Article  ADS  Google Scholar 

  31. Vanag, V.K., Epstein, I.R.: Translational and nontranslational motion of perturbed Turing patterns. Phys. Rev. E 67, 066219 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Rüdiger, S.: Dynamics of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301 (2003)

    Article  ADS  Google Scholar 

  33. Vanag, V.K., Epstein, I.R.: Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673 (2009)

    Article  Google Scholar 

  34. Yang, L., et al.: Turing patterns beyond hexagons and stripes. Chaos 16, 037114 (2006)

    Article  ADS  Google Scholar 

  35. Yang, L., Epstein, I.R.: Symmetric, asymmetric, and antiphase Turing patterns in a model system with two identical coupled layers. Phys. Rev. E 69, 026211 (2004)

    Article  ADS  Google Scholar 

  36. Dolnik, M., Berenstein, I., Zhabotinsky, A.M., Epstein, I.R.: Spatial periodic forcing of Turing structures. Phys. Rev. Lett. 87, 238301 (2001)

    Article  ADS  Google Scholar 

  37. Karttunen, M., Provatas, N., Ala-Nissila, T., Grant, M.: Nucleation, growth, and scaling in slow combustion. J. Stat. Phys. 90, 1401 (1998)

    Article  ADS  MATH  Google Scholar 

  38. Kim, T., Lin, M.: Stable advection-reaction-diffusion with arbitrary anisotropy. Comput. Anim. Virtual Worlds 18, 329 (2007)

    Article  Google Scholar 

  39. Painter, K.J., Maini, P.K., Othmer, H.G.: Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA 96, 5549 (1999)

    Article  ADS  Google Scholar 

  40. Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator–inhibitor systems. Nat. Phys. 6, 544 (2010)

    Article  Google Scholar 

  41. Wu, F.: Multistability and dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873 (2016)

    Article  Google Scholar 

  42. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  MATH  Google Scholar 

  43. Maini, P.K., et al.: Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487 (2012)

    Article  Google Scholar 

  44. Biancalani, T., Jafarpour, F., Goldenfeld, N.: Giant amplification of noise in fluctuation-induced pattern formation. Phys. Rev. Lett. 118, 018101 (2017)

    Article  ADS  Google Scholar 

  45. Guiu-Souto, J., et al.: Characterizing topological transitions in a Turing-pattern-forming reaction-diffusion system. Phys. Rev. E 85, 056205 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Dutta.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

Since no human or animal participants are involved in this research work, no ethical standards were applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, D., Dutta, K. Transition of Spatial Patterns in an Interacting Turing System. J Stat Phys 174, 351–364 (2019). https://doi.org/10.1007/s10955-018-2182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2182-y

Keywords

Navigation