Skip to main content
Log in

A Non-intersecting Random Walk on the Manhattan Lattice and \({\hbox {SLE}}_{6}\)

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a random walk on the Manhattan lattice. The walker must follow the orientations of the bonds in this lattice, and the walker is not allowed to visit a site more than once. When both possible steps are allowed, the walker chooses between them with equal probability. The walks generated by this model are known to be related to interfaces for bond percolation on a square lattice. So it is natural to conjecture that the scaling limit is \(\hbox {SLE}_6\). We test this conjecture with Monte Carlo simulations of the random walk model and find strong support for the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Amit, D.J., Parisi, G., Peliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27, 1635 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bradley, R.M.: Exact \(\theta \) point and exponents for polymer chains on an oriented two-dimensional lattice. Phys. Rev. A 39, 3738–3740 (1989)

    Article  ADS  Google Scholar 

  3. Camia, F., Newman, C.M.: Critical percolation exploration path and \(\text{ SLE }_6\): a proof of convergence. Prob. Theory Relat. Fields 139, 473–519 (2007)

    Article  MATH  Google Scholar 

  4. Dai, Y.: The exit distribution for smart kinetic walk with symmetric and asymmetric transition probability. J. Stat. Phys. 166, 1455–1463 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Grimmett, G.: Percolation. Springer, New York (1999)

    Book  MATH  Google Scholar 

  6. Gunn, J.M.F., Ortuno, M.: Percolation and motion in a simple random environment. J. Phys. A 18, L1095 (1985)

    Article  ADS  Google Scholar 

  7. Hemmer, P.C., Hemmer, S.: Trapping of genuine self-avoiding walks. Phys. Rev. A 34, 3304 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kasteleyn, P.W.: A soluble self-avoiding walk problem. Physica 29, 1329–1337 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kennedy, T.: Monte Carlo tests of SLE predictions for 2D self-avoiding walks. Phys. Rev. Lett. 88, 130601 (2002)

    Article  ADS  Google Scholar 

  10. Kennedy, T.: Conformal invariance and stochastic Loewner evolution predictions for the 2D self-avoiding walk—Monte Carlo tests. J. Stat. Phys. 114, 51–78 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kennedy, T.: The smart kinetic self-avoiding walk and Schramm–Loewner evolution. J. Stat. Phys. 160, 302–320 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kremer, K., Lyklema, J.W.: Indefinitely growing self-avoiding walk. Phys. Rev. Lett. 54, 267 (1985)

    Article  ADS  Google Scholar 

  13. Lawler, G.: Conformally Invariant Processes in the Plane. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  14. Lawler, G.F.,  Schramm, O.,  Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2, vol. 339. Proc. Sympos. Pure Math. vol. 72. Amer. Math. Soc., Providence, RI (2004).

  15. Lawler, G., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  17. Malakis, A.: Self-avoiding walks on oriented square lattices. J. Phys. A. 8, 1885–1898 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schramm, O.: A percolation formula. Electron. Comm. Probab. 6, 115–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Math. Acad. Sci. Paris 333, 239–244 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Weinrib, A., Trugman, S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993 (1985)

    Article  ADS  Google Scholar 

  21. Werner, W.: Lectures on two-dimensional critical percolation. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics. IAS, Park City (2007)

    Google Scholar 

  22. Ziff, R.M., Cummings, P.T., Stell, G.: Generation of percolation cluster perimeters by a random walk. J. Phys. A 17, 3009 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

An allocation of computer time from the UA Research Computing High Performance Computing (HPC) and High Throughput Computing (HTC) at the University of Arizona is gratefully acknowledged. Funding was provided by Directorate for Mathematical and Physical Sciences (Grant No. DMS-1500850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kennedy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, T. A Non-intersecting Random Walk on the Manhattan Lattice and \({\hbox {SLE}}_{6}\). J Stat Phys 174, 77–96 (2019). https://doi.org/10.1007/s10955-018-2176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2176-9

Keywords

Navigation