Skip to main content
Log in

On the Mean Residence Time in Stochastic Lattice-Gas Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A heuristic law widely used in fluid dynamics for steady flows states that the amount of a fluid in a control volume is the product of the fluid influx and the mean time that the particles of the fluid spend in the volume, or mean residence time. We rigorously prove that if the mean residence time is introduced in terms of sample-path averages, then stochastic lattice-gas models with general injection, diffusion, and extraction dynamics verify this law. Only mild assumptions are needed in order to make the particles distinguishable so that their residence time can be unambiguously defined. We use our general result to obtain explicit expressions of the mean residence time for the Ising model on a ring with Glauber + Kawasaki dynamics and for the totally asymmetric simple exclusion process with open boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. As usual, we say that a property holds \(\mathbb {P}\)-almost surely (\(\mathbb {P}\)-a.s. for short) if it holds for all \(\omega \in \varOmega _o\in {\mathcal {F}}\) with \(\mathbb {P}[\varOmega _o]=1\).

References

  1. van der Ent, R.J., Tuinenburg, O.A.: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 21, 779–790 (2017)

    Article  ADS  Google Scholar 

  2. Sincero, A.P., Sincero, G.A.: Physical-Chemical Treatment of Water and Wastewater. CRC Press, Boca Raton (2003)

    Google Scholar 

  3. Nauman, E.B.: Residence time theory. Ind. Eng. Chem. Res. 47, 3752–3766 (2008)

    Article  Google Scholar 

  4. Weiss, M.: The relevance of residence time theory to pharmacokinetics. Eur. J. Clin. Pharmacol. 43, 571–579 (1992)

    Article  Google Scholar 

  5. Zamparo, M., Valdembri, D., Serini, G., Kolokolov, I.V., Lebedev, V.V., DallAsta, L., Gamba, A.: Optimality in self-organized molecular sorting (in preparation)

  6. Little, J.D.C.: Little’s law as viewed on its 50th anniversary. Oper. Res. 59, 536–549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Griffeath, D.: Frank Spitzer’s pioneering work on interacting particle systems. Ann. Probab. 21, 608–621 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. 2007(07), P07014 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  11. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, San Diego (2001)

    Chapter  Google Scholar 

  13. Cirillo, E.N.M., Krehel, O., Muntean, A., van Santen, R., Sengar, A.: Residence time estimates for asymmetric simple exclusion dynamics on strips. Physica A 442, 436–457 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Messelink, J., Rens, R., Vahabi, M., MacKintosh, F.C., Sharma, A.: On-site residence time in a driven diffusive system: violation and recovery of a mean-field description. Phys. Rev. E 93, 012119 (2016)

    Article  ADS  Google Scholar 

  15. Norris, J.R.: Markov Chains, reprinted edn. Cambridge University Press, Cambridge (1998)

  16. Serfozo, R.: Basics of Applied Stochastic Processes. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zamparo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamparo, M., Dall’Asta, L. & Gamba, A. On the Mean Residence Time in Stochastic Lattice-Gas Models. J Stat Phys 174, 120–134 (2019). https://doi.org/10.1007/s10955-018-2175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2175-x

Keywords

Mathematics Subject Classification

Navigation