Skip to main content

Advertisement

Log in

Hyperscaling for Oriented Percolation in \(1+1\) Space–Time Dimensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider nearest-neighbor oriented percolation in \(d+1\) space–time dimensions. Let \(\rho ,\eta ,\nu \) be the critical exponents for the survival probability up to time t, the expected number of vertices at time t connected from the space–time origin, and the gyration radius of those vertices, respectively. We prove that the hyperscaling inequality \(d\nu \ge \eta +2\rho \), which holds for all \(d\ge 1\) and is a strict inequality above the upper-critical dimension 4, becomes an equality for \(d=1\), i.e., \(\nu =\eta +2\rho \), provided existence of at least two among \(\rho ,\eta ,\nu \). The key to the proof is the recent result on the critical box-crossing property by Duminil-Copin et al. [6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, L.-C., Sakai, A.: Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Relat. Fields 142, 151–188 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.-C., Sakai, A.: Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Prob. 39, 507–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343, 725–745 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Duminil-Copin, H., Tassion, V., Teixeira, A.: The box-crossing property for critical two-dimensional oriented percolation. Probab. Theory Relat. Fields (to appear). arXiv:1610.10018

  7. Grimmett, G.: Percolation, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  8. Grimmett, G., Hiemer, P.: Directed percolation and random walk. In and Out of Equilibrium. Sidoravicius, V., Birkhäuser (eds.) 273–297 (2002)

  9. van der Hofstad, R., Holmes, M.: The survival probability and \(r\)-point functions in high dimensions. Ann. Math. 178, 665–685 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. van der Hofstad, R., Slade, G.: A generalised inductive approach to the lace expansion. Probab. Theory Relat. Fields 122, 389–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kesten, H.: Scaling relations for \(2D\)-percolation. Commun. Math. Phys. 109, 109–156 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Menshikov, M.V.: Coincidence of critical points in percolation problems. Soviet Math. Dokl. 33, 856–859 (1986)

    MATH  Google Scholar 

  13. Nguyen, B.G., Yang, W.-S.: Triangle condition for oriented percolation in high dimensions. Ann. Prob. 21, 1809–1844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen, B.G., Yang, W.-S.: Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys. 78, 841–876 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ódor, G.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheor. verw. Geb 43, 39–48 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor. verw. Geb. 56, 229–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sakai, A.: Mean-field critical behavior for the contact process. J. Stat. Phys. 104, 111–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sakai, A.: Hyperscaling inequalities for the contact process and oriented percolation. J. Stat. Phys. 106, 201–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sano, M., Tamai, K.: A universal transition to turbulence in channel flow. Nat. Phys. 12, 249–253 (2016)

    Article  Google Scholar 

  21. Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discret. Math. 3, 227–245 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated when I started preparation for the Summer School in Mathematical Physics, held at the University of Tokyo from August 25 through 27, 2017. I am grateful to the organizers, Yasuyuki Kawahigashi and Yoshiko Ogata, for the opportunity to speak at the summer school and meet with many researchers in the laminar-turbulent flow transition. Finally, I would like to thank Alessandro Giuliani for his support during the refereeing process and anonymous referees for valuable comments to the earlier version to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sakai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, A. Hyperscaling for Oriented Percolation in \(1+1\) Space–Time Dimensions. J Stat Phys 171, 462–469 (2018). https://doi.org/10.1007/s10955-018-2020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2020-2

Keywords

Navigation