Skip to main content

Advertisement

Log in

The Global Optimization of Pt13 Cluster Using the First-Principle Molecular Dynamics with the Quenching Technique

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The high-temperature first-principle molecular dynamics method used to obtain the low energy configurations of clusters [L. L. Wang and D. D. Johnson, PRB 75, 235405 (2007)] is extended to a considerably large temperature range by combination with the quenching technique. Our results show that there are strong correlations between the possibilities for obtaining the ground-state structure and the temperatures. Larger possibilities can be obtained at relatively low temperatures (as corresponds to the pre-melting temperature range). Details of the structural correlation with the temperature are investigated by taking the Pt13 cluster as an example, which suggests a quite efficient method to obtain the lowest-energy geometries of metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baletto, F., Ferrando, R.: Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)

    Article  ADS  Google Scholar 

  2. Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999)

    Article  Google Scholar 

  3. Yoo, S., Zeng, X.C.: Global geometry optimization of silicon clusters described by three empirical potentials. J. Chem. Phys. 119, 1442–1450 (2003)

    Article  ADS  Google Scholar 

  4. Wales, D.J., Hodges, M.P.: Global minima of water cluster (H2O)n, n ≤ 21, described by an empirical potential. Chem. Phys. Lett. 286, 65–75 (1998)

    Article  ADS  Google Scholar 

  5. Yeo, S.C., Kim, D.H., Shin, K., Lee, H.M.: Phase diagram and structural evolution of Ag-Au bimetallic nanoparticles: molecular dynamics simulations. Phys. Chem. Chem. Phys. 14, 2791–2796 (2012)

    Article  Google Scholar 

  6. Rapallo, A., Rossi, G., Ferrando, R.: Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. J. Chem. Phys. 122, 194308 (2005)

    Article  ADS  Google Scholar 

  7. Shayeghi, A., Götz, D., Davis, J.B.A., Schäfer, R., Johnston, R.L.: Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys. Chem. Chem. Phys. 17, 2104–2112 (2015)

    Article  Google Scholar 

  8. Davis, J.B.A., Horswell, S.L., Johnston, R.L.: Global optimization of 8 − 10 atom palladium − iridium nanoalloys at the DFT level. J. Phys. Chem. A 118, 208–214 (2014)

    Article  Google Scholar 

  9. Datta, S., Raychaudhuri, A.K., Dasgupta, T.S.: First principles study of bimetallic Ni13-nAgn nano-clusters (n = 0–13): structural, mixing, electronic, and magnetic properties. J. Chem. Phys. 146, 164301–164308 (2017)

    Article  ADS  Google Scholar 

  10. Zhang, M., Fournier, R.: Density-functional-theory study of 13-atom metal clusters M13, M = Ta-Pt. Phys. Rev. A 79, 043203–043210 (2009)

    Article  ADS  Google Scholar 

  11. Chou, J.P., Hsing, C.R., Wei, C.M.: Ab initio random structure search for 13-atom cluster of fcc elements. J. Phys. Condens. Mat. 25, 125305–125307 (2013)

    Article  ADS  Google Scholar 

  12. Wales, D.J., Doye, J.P.K.: On the thermodynamics of global optimization. J. Phys. Chem. A 101, 5111 (1997)

    Article  Google Scholar 

  13. Wales, D.J., Bogdan, T.V.: Potential energy and free energy landscapes. J. Phys. Chem. B 110, 20765 (2006)

    Article  Google Scholar 

  14. Gehrke, R., Reuter, K.: Assessing the efficiency of first-principles basin-hopping sampling. Phys. Rev. B 79, 085412 (2009)

    Article  ADS  Google Scholar 

  15. Rondina, G.G., Silva, J.L.F.D.: Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles. J. Chem. Inf. Model. 53, 2282–2298 (2013)

    Article  Google Scholar 

  16. Hartke, B.: Global geometry optimization of clusters using genetic algorithms. J. Phys. Chem. 97, 9973–9976 (1993)

    Article  Google Scholar 

  17. Deaven, D.M., Ho, K.M.: Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288 (1995)

    Article  ADS  Google Scholar 

  18. Daven, D., Tit, N., Morris, J., Ho, K.: Structural optimization of Lennard-Jones clusters by a genetic algorithm. Chem. Phys. Lett. 256, 195–200 (1996)

    Article  ADS  Google Scholar 

  19. Wang, L.L., Johnson, D.D.: Density functional study of structural trends for late-transition-metal 13-atom clusters. Phys. Rev. B 75, 235405–235410 (2007)

    Article  ADS  Google Scholar 

  20. Hu, C.H., Chizallet, C., Toulhoat, H., Raybaud, P.: Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems. Phys. Rev. B 79, 195416 (2009)

    Article  ADS  Google Scholar 

  21. Piotrowski, M.J., Piquini, P., Da Silva, J.L.F.: Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys. Rev. B 81, 155446 (2010)

    Article  ADS  Google Scholar 

  22. Kresse, G., Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  23. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  24. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  25. Kohn, W., And, A.D.B., Parr, R.G.: Density functional theory of electronic structure. J. Phys. Chem. A 31, 12974–12980 (1996)

    Article  Google Scholar 

  26. Görling, A.: Density-functional theory beyond the Hohenberg-Kohn theorem. Phys. Rev. A 59, 3359–3374 (1999)

    Article  ADS  Google Scholar 

  27. Nosè, S.: S.: a unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  28. Piotrowski, M.J., Piquini, P., Zeng, Z.H., Da Silva, J.L.F.: Adsorption of NO on the Rh13, Pd13, Ir13, and Pt13 clusters: a density functional theory investigation. J. Phys. Chem. C 116, 20540–20549 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11664038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Duan, H., Cao, B. et al. The Global Optimization of Pt13 Cluster Using the First-Principle Molecular Dynamics with the Quenching Technique. J Stat Phys 171, 427–433 (2018). https://doi.org/10.1007/s10955-018-2003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2003-3

Keywords

Navigation