Journal of Statistical Physics

, Volume 170, Issue 4, pp 784–799 | Cite as

Persistence Probabilities of Two-Sided (Integrated) Sums of Correlated Stationary Gaussian Sequences

  • Frank Aurzada
  • Micha Buck


We study the persistence probability for some two-sided, discrete-time Gaussian sequences that are discrete-time analogues of fractional Brownian motion and integrated fractional Brownian motion, respectively. Our results extend the corresponding ones in continuous time in Molchan (Commun Math Phys 205(1):97–111, 1999) and Molchan (J Stat Phys 167(6):1546–1554, 2017) to a wide class of discrete-time processes.


Fractional Brownian motion Fractional Gaussian noise Long-range dependence Persistence probability Stationary Gaussian processes 


  1. 1.
    Ash, R.B., Gardner, M.E.: Topics in Stochastic Processes. Probability and Mathematical Statistics, vol. 27. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Aurzada, F., Baumgarten, C.: Persistence of fractional Brownian motion with moving boundaries and applications. J. Phys. A: Math. Theor. 46, 12 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aurzada, F., Dereich, S.: Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1), 236–251 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aurzada, F., Guillotin-Plantard, N., Pène, F.: Persistence probabilities for stationary increment processes. Stoch. Process. Their Appl.
  5. 5.
    Aurzada, F., Simon, T.: Persistence probabilities and exponents. In: Lévy Matters V, vol. 2149 of Lecture Notes in Mathematics, pp. 183–224. Springer, Cham (2015)Google Scholar
  6. 6.
    Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  7. 7.
    Bray, A.J., Majumdar, S.N., Schehr, G.: Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62(3), 225–361 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Castell, F., Guillotin-Plantard, N., Pène, F., Schapira, B.: On the one-sided exit problem for stable processes in random scenery. Electron. Commun. Probab. (2013)
  9. 9.
    Majumdar, S.N.: Persistence in nonequilibrium systems. Curr. Sci. 77(3), 370–375 (1999)Google Scholar
  10. 10.
    Majumdar, S.N.: Persistence of a particle in the Matheron–de Marsily velocity field. Phys. Rev. E 68(5), 050101 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Molchan, G.: Maximum of a fractional Brownian motion: probabilities of small values. Commun. Math. Phys. 205(1), 97–111 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Molchan, G.: The inviscid burgers equation with fractional brownian initial data: the dimension of regular lagrangian points. J. Stat. Phys. 167(6), 1546–1554 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Molchan, G., Khokhlov, A.: Small values of the maximum for the integral of fractional brownian motion. J. Stat. Phys. 114(3–4), 923–946 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Oshanin, G., Rosso, A., Schehr, G.: Anomalous fluctuations of currents in sinai-type random chains with strongly correlated disorder. Phys. Rev. Lett. 110(10), 100602 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Prékopa, A.: Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. 32, 301–316 (1971)MathSciNetMATHGoogle Scholar
  16. 16.
    Redner, S.: Survival probability in a random velocity field. Phys. Rev. E 56, 4967–4972 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Samorodnitsky, G.: Long range dependence. Found. Trends® Stoch. Syst. 1 3, 163–257 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    She, Z.-S., Aurell, E., Frisch, U.: The inviscid burgers equation with initial data of brownian type. Commun. Math. Phys. 148(3), 623–641 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sinai, Y.G.: Statistics of shocks in solutions of inviscid burgers equation. Commun. Math. Phys. 148(3), 601–621 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Whitt, W.: Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer Series in Operations Research and Financial Engineering. Springer, New York (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations