Advertisement

Journal of Statistical Physics

, Volume 170, Issue 4, pp 684–699 | Cite as

Absence of Replica Symmetry Breaking in the Transverse and Longitudinal Random Field Ising Model

Article
  • 68 Downloads

Abstract

It is proved that replica symmetry is not broken in the transverse and longitudinal random field Ising model. In this model, the variance of spin overlap of any component vanishes in any dimension almost everywhere in the coupling constant space in the infinite volume limit. The weak Fortuin–Kasteleyn–Ginibre property in this model and the Ghirlanda–Guerra identities in artificial models in a path integral representation based on the Lie–Trotter–Suzuki formula enable us to extend Chatterjee’s proof for the random field Ising model to the quantum model.

Keywords

Transverse field Ising model Quantum spin systems Gaussian random field The FKG inequality The Ghirlanda–Guerra identities The Lie–Trotter–Suzuki formula Interpolation 

Notes

Acknowledgements

It is pleasure to thank R. M. Woloshyn for reading the manuscript and helpful suggestions. I am grateful to M. Aoyagi for discussions in early stage of this work. I would like to thank the anonymous referees for essential comments.

References

  1. 1.
    Aizenman, M., Contucci, P.: On the stability of quenched state in mean-field spin glass models. J. Stat. Phys. 92, 765–783 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aizenman, M., Greenblatt, R.L., Lebowitz, J.L.: Proof of rounding by quenched disorder of first order transitions in low-dimensional quantum systems. J. Math. Phys. 53(2), 023301 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chatterjee, S.: Absence of replica symmetry breaking in the random field Ising model. Commun. Math. Phys. 337, 93–102 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chatterjee, S.: The Ghirlanda-Guerra identities without averaging. preprint, arXiv:0911.4520 (2009)
  5. 5.
    Chatterjee, S. : Disorder chaos and multiple valleys in spin glasses. preprint, arXiv:0907.3381 (2009)
  6. 6.
    Contucci, P., Giardinà, C.: The Ghirlanda-Guerra identities. J. Stat. Phys. 126, 917–931 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Contucci, P., Giardinà, C.: Perspectives on Spin Glasses. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Contucci, P., Giardinà, C., Pulé, J.: The infinite volume limit for finite dimensional classical and quantum disordered systems. Rev. Math. Phys. 16, 629–638 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Campanino, M., Klein, A.: Decay of two-point functions for (d + 1)-dimensional percolation, ising and potts models with d-dimensional disorder. Commun. Math. Phys. 135, 483–497 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Campanino, M., Klein, A., Pelez, J.F.: Localization in the ground state of the ising model with a random transverse field. Commun. Math. Phys. 135, 499–515 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Contucci, P., Lebowitz, J.L.: Correlation inequalities for quantum spin systems with quenched centered disorder. J. Math. Phys. 51, 023302-1 -6 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Crawford, N.: Thermodynamics and universality for mean field quantum spin glasses. Commun. Math. Phys. 274, 821–839 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5, 965–974 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ghirlanda, S., Guerra, F.: General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31, 9149–9155 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Goldschmidt, C., Ueltschi, D., Windridge, P.: Quantum Heisenberg models and their probabilistic representations Entropy and the quantum II. Contemp. Math. 562, 177–224 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Harris, A.B.: Bounds for certain thermodynamic averages. J. Math. Phys. 8, 1044–1045 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    Itoi, C.: General properties of overlap operators in disordered quantum spin systems. J. Stat. phys. 163, 1339–1349 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Itoi, C.: Universal nature of replica symmetry breaking in quantum systems with Gaussian disorder. J. Stat. phys. 163, 1339–1349 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nishimori, H., Sherrington, D.: Absence of replica symmetry breaking in a region of the phase diagram of the Ising spin glass. In: AIP Conference Proceedings, vol. 553, p. 67 (2001)Google Scholar
  21. 21.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford university press, Oxford (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Panchenko, D.: The Ghirlanda-Guerra identities for mixed \(p\)-spin glass model. Compt. Read. Math. 348, 189–192 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13, L-115 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    Seiler, E., Simon, B.: Nelson’s symmetry and all that in Yukawa and \((\phi ^4)_3\) theories. Ann. Phys. 97, 470–518 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    Sherrington, S., Kirkpatrick, S.: Solvable model of spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    Suzuki, M.: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems. Prog. Theor. Phys. 56, 1454–1468 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Talagrand, M.: The Parisi formula. Ann. Math. 163, 221–263 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Talagrand, M.: Mean Field Models for Spin Glasses. Springer, Berlin (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Physics, GS & CSTNihon UniversityTokyoJapan

Personalised recommendations