Advertisement

Journal of Statistical Physics

, Volume 170, Issue 4, pp 653–671 | Cite as

Lieb–Schultz–Mattis Theorem with a Local Twist for General One-Dimensional Quantum Systems

  • Hal Tasaki
Article
  • 153 Downloads

Abstract

We formulate and prove the local twist version of the Yamanaka–Oshikawa–Affleck theorem, an extension of the Lieb–Schultz–Mattis theorem, for one-dimensional systems of quantum particles or spins. We can treat almost any translationally invariant system with global U(1) symmetry. Time-reversal or inversion symmetry is not assumed. It is proved that, when the “filling factor” is not an integer, a ground state without any long-range order must be accompanied by low-lying excitations whose number grows indefinitely as the system size is increased. The result is closely related to the absence of topological order in one-dimension. The present paper is written in a self-contained manner, and does not require any knowledge of the Lieb–Schultz–Mattis and related theorems.

Notes

Acknowledgements

I wish to thank Tohru Koma, Masaki Oshikawa, and Haruki Watanabe for valuable discussions which were essential for the present work, and Ian Affleck, Hosho Katsura, Tomonari Mizoguchi, Lee SungBin, Akinori Tanaka, Masafumi Udagawa, and Masanori Yamanaka for useful discussions and correspondences. The present work was supported by JSPS Grants-in-Aid for Scientific Research No. 16H02211.

References

  1. 1.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Affleck, I., Lieb, E.H.: A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12, 57–69 (1986)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Oshikawa, M., Yamanaka, M., Affleck, I.: Magnetization plateaus in spin chains: “Haldane gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997). arXiv:cond-mat/9610168 ADSCrossRefGoogle Scholar
  4. 4.
    Yamanaka, M., Oshikawa, M., Affleck, I.: Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79, 1110 (1997). arXiv:cond-mat/9701141 ADSCrossRefGoogle Scholar
  5. 5.
    Koma, T.: Spectral gaps of quantum Hall systems with interactions. J. Stat. Phys. 99, 313–381 (2000). arXiv:cond-mat/9809228 ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Nomura, K., Morishige, J., Isoyama, T.: Extension of the Lieb-Schultz-Mattis theorem. J. Phys. A. 48, 375001 (2015). arxiv:1503.05662 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Oshikawa, M.: Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535 (2000). arXiv:cond-mat/9911137 ADSCrossRefGoogle Scholar
  8. 8.
    Hastings, M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004). arXiv:1001.5280 ADSCrossRefGoogle Scholar
  9. 9.
    Hastings, M.B.: Sufficient conditions for topological order in insulators. Eur. Phys. Lett. 70, 824–830 (2005). arXiv:cond-mat/0411094 ADSCrossRefGoogle Scholar
  10. 10.
    Nachtergaele, B., Sims, R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Comm. Math. Phys. 276, 437–472 (2007). arXiv:math-ph/0608046 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Parameswaran, S.A., Turner, A.M., Arovas, D.P., Vishwanath, A.: Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013). arXiv:1212.0557 CrossRefGoogle Scholar
  12. 12.
    Watanabe, H., Po, H.C., Vishwanath, A., Zaletel, M.P.: Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystal. Proc. Natl. Acad. Sci. U.S.A. 112, 14551–14556. http://www.pnas.org/content/112/47/14551.short (2015)
  13. 13.
    Tasaki, H.: Low-lying excitations in one-dimensional lattice electron systems. Preprint. arXiv:cond-mat/0407616 (2004)
  14. 14.
    Haldane, F.D.M.: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Haldane, F.D.M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) non-linear sigma nodel. Phys. Lett. A 93, 464–468 (1983)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wen, X.-G: Zoo of quantum-topological phases of matter. Preprint. arxiv.org/abs/1610.03911 (2016)
  17. 17.
    Zeng, B., Chen, X., Zhou, D.-L., Wen, X.-G.: Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems, (to be published from Springer). arxiv.org/abs/1508.02595
  18. 18.
    Koma, T., Tasaki, H.: Symmetry breaking and finite-size effects in quantum many-body systems. J. Stat. Phys. 76, 745–803 (1994). arXiv:cond-mat/9708132 ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Watanabe, H.: Energy gap of neutral excitations implies vanishing charge susceptibility. Phys. Rev. Lett. 118, 117205 (2017). arXiv:1609.09543 ADSCrossRefGoogle Scholar
  20. 20.
    Wen, X.G.: Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  21. 21.
    Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011). arXiv:1008.3745 ADSCrossRefGoogle Scholar
  22. 22.
    Oshikawa, M.: Private communication (1997)Google Scholar
  23. 23.
    Lieb, E.H., Mattis, D.: Ordering energy levels in interacting spin chains. J. Math. Phys. 3, 749–751 (1962)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in \(S = 1\) quantum spin chains. Comm. Math. Phys. 147, 431–484 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan

Personalised recommendations