Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 878–891 | Cite as

First-Passage-Time Distribution for Variable-Diffusion Processes

  • Liberty Barney
  • Gemunu H. Gunaratne


First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221–233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.


Stochastic processes First-passage-time distributions Investment horizon 


  1. 1.
    Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1957)MATHGoogle Scholar
  2. 2.
    Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon & Breach, New York (1963)MATHGoogle Scholar
  3. 3.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637 (1973)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Merton, R.C.: Theory of rational option pricing. Bell J. Econ. 4, 141–183 (1973)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gunaratne, G.H., McCauley, J.L., Nicol, M., Török, A.: Variable step random walks and self-similar distributions. J. Stat. Phys. 121, 887–899 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gopikrishnan, P., Plerou, V., Nunes Amaral, L.A., Meyer, M., Stanley, H.E.: Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E 60, 5305 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Sornette, D.: Fokker–Planck equation of distribution of financial returns and power laws. Physica A 290, 211–217 (2001)ADSMathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    McCauley, J.L.: Dynamics of Markets: The New Financial Economics. Cambridge University Press, Cambridge (2009)MATHCrossRefGoogle Scholar
  9. 9.
    R. Cont (1997): Scaling and correlation in financial data. Cornell University Library. arXiv:cond-mat/9705075v3 (1997)
  10. 10.
    Bouchaud, J.-P., Giardina, I., Mezard, M.: On a universal mechanism for long-range volatility correlations. Quant. Financ. I, 212–216 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Borland, L.: A theory of non-Gaussian option pricing. Quant. Financ. 2, 415–431 (2002)MathSciNetGoogle Scholar
  12. 12.
    Hua, J.-C., Chen, L., Falcon, L., McCauley, J.L., Gunaratne, G.H.: Variable diffusion in stock market fluctuations. Physica A 419, 221–233 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Gunaratne, G.H., Nicol, M., Seemann, L., Török, A.: Clustering of volatility in variable diffusion processes. Physica A 388, 4424–4430 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    McCauley, J.L., Gunaratne, G.H., Bassler, K.E.: Hurst exponents, Markov processes, and fractional Brownian motion. Physica A 379, 1–9 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bassler, K.E., McCauley, J.L., Gunaratne, G.H.: Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets. Proc. Natl. Acad. Sci. 104, 17287–17290 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Seemann, L., McCauley, J.L., Gunaratne, G.H.: Intraday volatility and scaling in high frequency foreign exchange markets. Int. Rev. Financ. Anal. 20, 121–126 (2011)CrossRefGoogle Scholar
  17. 17.
    Seemann, L., Hua, J.-C., McCauley, J.L., Gunaratne, G.H.: Ensemble vs. time averages in financial time series analysis. Physica A 391, 6024–6032 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Fokker, A.D.: The average energy of rotating electric dipoles in the radiation field. Ann. d. Physik 43, 812 (1914)Google Scholar
  19. 19.
    Chandrasekar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Bassler, K.E., Gunaratne, G.H., McCauley, J.L.: Markov Processes, Hurst exponents, and nonlinear diffusion equations: with applications to finance. Physica A 369, 343–353 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Molini, A., Talkner, P., Katul, G.G., Porporato, A.: First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Physica A 390, 1841–1852 (2011)ADSMathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (2007)MATHGoogle Scholar
  23. 23.
    Bjork, T.: Theory in Continuous Time. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  24. 24.
    Carbone, A., Castelli, G., Stanley, H.E.: Time-dependent Hurst exponent in financial time series. Physica A 344, 267–271 (2004)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhou, W.-X., Yuan, W.-K.: Inverse statistics in stock markets: universality and idiosyncracy. Physica A 353, 433–444 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Bartolozzi, M., Mellen, C., Chan, F., Oliver, D., Di Matteo, T., Aste, T.: Applications of physical methods in high frequency futures markets. Proc. SPIE 6802, 68203 (2008)Google Scholar
  27. 27.
    Simonsen, I., Jensen, M.H., Johansen, A.: Optimal investment horizons. Eur. Phys. J. B 27, 583–586 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Jensen, M.H., Johansen, A., Petroni, F., Simonsen, I.: Inverse statistics in the foreign exchange market. Physica A 340, 678–684 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Branch, B., Ma, A.: Overnight return, the invisible hand behind intraday returns? J. Appl. Financ. 22(2), 90–100 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HoustonHoustonUSA

Personalised recommendations