Journal of Statistical Physics

, Volume 166, Issue 2, pp 368–397 | Cite as

Stochastic Hall-Magneto-hydrodynamics System in Three and Two and a Half Dimensions

  • Kazuo Yamazaki


We introduce the stochastic Hall-magneto-hydrodynamics (Hall-MHD) system in three and two and a half dimensions with infinite-dimensional multiplicative noise, white in time, and prove the global existence of a martingale solution via a stochastic Galerkin approximation and applications of Prokhorov’s, Skorokhod’s and martingale representation theorems, as well as the pressure term through de Rham’s theorem adapted to processes. The Hall term represents mathematically a very singular nonlinear term, unprecedented in the previous work. The results extend many others on the deterministic Hall-MHD and stochastic MHD systems and Navier–Stokes equations. In contrast to the stochastic MHD system, the path-wise uniqueness in the two and a half dimensional case is an open problem.


Hall-magneto-hydrodynamics system Martingale representation theorem Prokhorov’s theorem Skorokhod’s theorem 

Mathematics Subject Classification

35Q35 37L55 60H15 


  1. 1.
    Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.-G.: Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adams, R.A.: Sobolev Spaces. Academic, New York (1975)MATHGoogle Scholar
  3. 3.
    Barbu, V., Da Prato, G.: Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations. Appl. Math. Optim. 56, 145–168 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. A 201, 405–416 (1950)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)CrossRefMATHGoogle Scholar
  6. 6.
    Bessaih, H.: Martingale solutions for stochastic Euler equations. Stoch. Anal. Appl. 17, 713–725 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brzeźniak, Z., Motyl, E.: The existence of martingale solutions to the stochastic Boussinesq equations. Glob. Stoch. Anal. 1, 175–216 (2014)Google Scholar
  8. 8.
    Campos, L.M.B.C.: On hydromagnetic waves in atmospheres with application to the sun. Theor. Comput. Fluid Dyn. 10, 37–70 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256, 3835–3858 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255, 3971–3982 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chae, D., Degond, P., Liu, J.-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincar\(\acute{\rm e}\) Anal. Non Lin\(\acute{\rm e}\)aire 31, 555–565 (2014)Google Scholar
  12. 12.
    Chae, D., Wan, R., Wu, J.: Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. J. Math. Fluid Mech. 17, 627–638 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chandrasekhar, S.: The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc. R. Soc. Lond. A 204, 435–449 (1951)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)Google Scholar
  16. 16.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)CrossRefMATHGoogle Scholar
  17. 17.
    Donato, S., Servidio, S., Dmitruk, P., Carbone, V., Shay, M.A., Cassak, P.A., Matthaeus, W.H.: Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence. Phys. Plasmas 19, 092307 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD-systems. Physica D 208, 59–72 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier–Stokes equations. Appl. Math. Optim. 48, 195–210 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lighthill, M.J.: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos. Trans. R. Soc. Lond. A 252, 397–430 (1960)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)CrossRefMATHGoogle Scholar
  24. 24.
    Mahajan, S.M., Krishan, V.: Exact solution of the incompressible Hall magnetohydrodynamics. Mon. Not. R. Astron. Soc. 359, L27–L29 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  26. 26.
    Malham, S.J.A.: Regularity assumptions and length scales for the Navier–Stokes equations. PhD Thesis, University of London, London (1993)Google Scholar
  27. 27.
    Meyer, P.A.: Probability and Potentials. Blaisdell Publishing Company, Waltham (1966)MATHGoogle Scholar
  28. 28.
    Miura, H., Hori, D.: Hall effects on local structures in decaying MHD turbulence. J. Plasma Fusion Res. Ser. 8, 73–76 (2009)Google Scholar
  29. 29.
    Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1, 157–214 (1956)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sango, M.: Magnetohydrodynamic turbulent flows: existence results. Physica D 239, 912–923 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290 (1956)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Skorokhod, A.V.: Studies in the Theory of Random Processes. Dover Publications, Inc., New York (1965)MATHGoogle Scholar
  34. 34.
    Sritharan, S.S., Sundar, P.: The stochastic magneto-hydrodynamic system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 241–265 (1999)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sundar, P.: Stochastic magneto-hydrodynamic system perturbed by general noise. Commun. Stoch. Anal. 8, 413–437 (2010)MathSciNetMATHGoogle Scholar
  36. 36.
    Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. American Mathematical Society, Chelsea Publishing, Providence (1977)MATHGoogle Scholar
  37. 37.
    Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Yamazaki, K.: 3-D stochastic micropolar and magneto-micropolar fluid systems with non-Lipschitz multiplicative noise. Commun. Stoch. Anal. 8, 413–437 (2014)MathSciNetGoogle Scholar
  39. 39.
    Yamazaki, K.: Recent developments on the micropolar and magneto-micropolar fluid systems: deterministic and stochastic perspectives. In: Stochastic Equations for Complex Systems: Mathematical Engineering, pp. 85–103. Springer, Berlin (2015)Google Scholar
  40. 40.
    Yamazaki, K.: Global martingale solution to the stochastic nonhomogeneous magnetohydrodynamics system. Adv. Differ. Equ. 21, 1085–1116 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA

Personalised recommendations