Journal of Statistical Physics

, Volume 166, Issue 3–4, pp 1092–1127 | Cite as

Large Block Properties of the Entanglement Entropy of Free Disordered Fermions



We consider a macroscopic disordered system of free d-dimensional lattice fermions whose one-body Hamiltonian is a Schrödinger operator H with ergodic potential. We assume that the Fermi energy lies in the exponentially localized part of the spectrum of H. We prove that if \(S_\Lambda \) is the entanglement entropy of a lattice cube \(\Lambda \) of side length L of the system, then for any \(d \ge 1\) the expectation \(\mathbf { E}\{L^{-(d-1)}S_\Lambda \}\) has a finite limit as \(L \rightarrow \infty \) and we identify the limit. Next, we prove that for \(d=1\) the entanglement entropy admits a well defined asymptotic form for all typical realizations (with probability 1) as \( L \rightarrow \infty \). According to numerical results of Pastur and Slavin (Phys Rev Lett 113:150404, 2014) the limit is not selfaveraging even for an i.i.d. potential. On the other hand, we show that for \(d \ge 2\) and an i.i.d. random potential the variance of \(L^{-(d-1)}S_\Lambda \) decays polynomially as \(L \rightarrow \infty \), i.e., the entanglement entropy is selfaveraging.


Entanglement entropy Free fermions Anderson localization 



We wish to express our special thanks to J. Fillman for careful reading of a draft of this manuscript, numerous corrections and suggestions that markedly improved the final version. We are grateful to A. Sobolev for numerous discussions and for drawing our attention to his work [41], which allowed us to make the paper more transparent and the results (especially Result 4 and Theorem 3.7) stronger. L.P. would like to thank the Isaac Newton Institute for Mathematical Sciences (Cambridge) for its hospitality during the program “Periodic and Ergodic Spectral Problems”, May 2015 supported by EPSRC Grant Number EP/K032208/1 and the Erwin Schrödinger Institute (Vienna) for its hospitality during the program “Quantum Many Body Systems, Random Matrices and Disorder”, July 2015. Financial support of grant 4/16-M of the National Academy of Sciences of Ukraine is also acknowledged. A.E. is supported in part by NSF under Grant DMS-1210982.


  1. 1.
    Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Entanglement dynamics of disordered quantum XY chains. Lett. Math. Phys. 106, 649–674 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdul-Rahman, H., Stolz, G.: A uniform area law for the entanglement of the states in the disordered XY chain. J. Math. Phys. 56, 121901 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A 31, 6783–6806 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aizenman, M., Schenker, J.M., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aizenman, M., Greenblatt, R.L., Lebowitz, J.L.: Proof of rounding by quenched disorder of first order transitions in low-dimensional quantum systems. J. Math. Phys. 53, 023301 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Aizenman, M., Warzel, S.: Random Operators : Disorder Effects on Quantum Spectra and Dynamics. AMS, Providence (2015)MATHGoogle Scholar
  7. 7.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many body systems. Rev. Mod. Phys. 80, 517–578 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benatti, F., Floreanini, R., Marzolino, U.: Entanglement in fermion systems and quantum metrology. Phys. Rev. A 89, 032326 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Bogolyubov, N.N., Bogolyubov Jr., N.N.: Introduction to Quantum Statistical Mechanics. World Scientific Publishing, Hackensack (2010)MATHGoogle Scholar
  10. 10.
    Böttcher, A., Silbermann, B.: Analysis of Töplitz Operators. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  11. 11.
    Brandao, F., Horodecki, M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333, 761–798 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Calabrese, P., Cardy, J., Doyon, B.: Entanglement entropy in extended systems. J. Phys. A 42, 500301 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dahlsten, O.C.O., Lupo, C., Mancini, S., Serafini, A.: Entanglement typicality. J. Phys. A 47, 363001 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Germinet, F., Taarabt, A.: Spectral properties of dynamical localization for Schrödinger operators. Rev. Math. Phys. 25, 1350016 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gioev, D., Klich, I.: Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett. 96, 100503 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hastings, M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Hastings, M.B.: An area law for one dimensional quan- tum systems. J. Stat. Mech. Theory Exp. 2007, P08024 (2007)Google Scholar
  19. 19.
    Helling, R. C., Leschke, H., Spitzer, W. L.: A special case of a conjecture by Widom with implications to fermionic entanglement entropy. Int. Math. Res. Notices 1451–1482 (2011)Google Scholar
  20. 20.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jitomirskaya, S., Kruger, H.: Exponential dynamical localization for the almost Mathieu operator. Commun. Math. Phys. 322, 877–882 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kirsch, W., Pastur, L.: On the analogues of Szegö’s theorem for ergodic operators. Sbornik: Math. 206(1), 93–119 (2015)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Killoran, N., Cramer, M., Plenio, M.B.: Extracting entanglement from identical particles. Phys. Rev. Lett. 112, 150501 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Fomin, S.V., Kornfel’d, I.P., Sinai, Y.G.: Ergodic Theory. Springer, Berlin (1981)Google Scholar
  25. 25.
    Laflorencie, N.: Quantum entanglement in condensed matter systems. Phys. Rep. 643, 1–59 (2016)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Leschke, H., Sobolev, A., Spitzer, W.: Scaling of Ré nyi entanglement entropies of the free Fermi-gas ground state: a rigorous proof. Phys. Rev. Lett. 112, 160403 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Leschke, H., Sobolev, A.V., Spitzer, W.: Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature. J. Phys. A 49, 30LT04 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Lifshitz, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1989)Google Scholar
  29. 29.
    Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Nachtergaele, B., Sims, R., Stolz, G.: An area law for the bipartite entanglement of disordered oscillator systems. J. Math. Phys. 54, 042110 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Pastur, L.A., Figotin, A.L.: Theory of disordered spin systems. Teor. Math. Phys. 32, 615–623 (1978)CrossRefGoogle Scholar
  32. 32.
    Pastur, L.A., Figotin, A.L.: Spectra of Random and Almost Periodic Operators. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  33. 33.
    Pastur, L., Slavin, V.: Area law scaling for the entropy of disordered quasifree fermions. Phys. Rev. Lett. 113, 150404 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Peschel, I., Eisler, V.: Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 42, 504003 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Pouranvari, M., Zhang, Y., Yang, K.: Entanglement area law in disordered free fermion Anderson model in one, two, and three dimensions. Adv. Condens. Matter Phys. 397630 (2015)Google Scholar
  36. 36.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, Reading (1977)Google Scholar
  37. 37.
    Shi, Y.: Quantum entanglement in second quantized condensed matter systems. J. Phys. A 37, 6807–6822 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Simon, B.: Szegő’s Theorem and its Descendants. Spectral Theory for \(L^{2}\) Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton (2011)MATHGoogle Scholar
  39. 39.
    Sobolev, A.V.: Quasi-classical asymptotics for pseudodifferential operators with discontinuous symbols: Widom’s conjecture. Funct. Anal. Appl. 44, 313–317 (2010)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sobolev, A.V.: Pseudodifferential Operators with Discontinuous Symbols: Widom’s Conjecture. Memoirs of the AMS, vol. 222. AMS, Providence (2013)Google Scholar
  41. 41.
    Sobolev, A. V.: Functions of self-adjoint operators in ideals of compact operators. arXiv:1504.07261
  42. 42.
    Stolz, G.: An introduction to the mathematics of Anderson localization. Entropy and the Quantum II. Contemporary Mathematics, pp. 71–108. AMS, Providence (2011)CrossRefGoogle Scholar
  43. 43.
    Wolf, M.M.: Violation of the entropic area law for fermions. Phys. Rev. Lett. 96, 010404 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsVirginia TechBlacksburgUSA
  2. 2.Mathematical DivisionB.Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine

Personalised recommendations