Skip to main content
Log in

Coexistence of Shocks and Rarefaction Fans: Complex Phase Diagram of a Simple Hyperbolic Particle System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper investigates the non-equilibrium hydrodynamic behavior of a simple totally asymmetric interacting particle system of particles, antiparticles and holes on \(\mathbb {Z}\). Rigorous hydrodynamic results apply to our model with a hydrodynamic flux that is exactly calculated and shown to change convexity in some region of the model parameters. We then characterize the entropy solutions of the hydrodynamic equation with step initial condition in this scenario which include various mixtures of rarefaction fans and shock waves. We highlight how the phase diagram of the model changes by varying the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34(4), 1339–1369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Strong hydrodynamic limit for attractive particle systems on \(\mathbb{Z}\). Electron. J. Probab. 15(1), 1–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13(50), 1380–1418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chowdhury, D., Wang, J.-S.: Flow properties of driven-diffusive lattice gases: theory and computer simulation. Pyhs. Rev. E 65(4), 046126 (2002)

    Article  ADS  Google Scholar 

  5. Cocozza-Thivent, C.: Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70(4), 509–523 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fossati, M., Quartapelle, L.: The Riemann problem for hyperbolic equations under a nonconvex flux with two inflection points. 18ème Seminaire on la Mecanique des Fluides Numerique, Institut Henri Poincaré, France, January 2006. arXiv:1402.5906 (2006)

  7. Hager, J.S., Krug, J., Popkov, V., Shütz, G.M.: Minimal current phase and universal boundary layers in driven diffusive systems. Phys. Rev. E 63(5), 056110 (2001)

    Article  ADS  Google Scholar 

  8. Hayes, B.T., LeFloch, P.G.: Non-classical shocks and kinetic relations: scalar conservation laws. Arch. Rational Mech. Anal. 139(1), 1–56 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2011)

    Book  MATH  Google Scholar 

  10. Katz, S., Lebowitz, J.L., Spohn, H.: Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors. J. Stat. Phys. 34(3), 497–537 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Landim, C.: Conservation of local equilibrium for attractive particle systems on \(\mathbb{Z}^d\). Ann. Probab. 21(4), 1782–1808 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  14. Popkov, V., Rákos, A., Willmann, R.D., Kolomeisky, A.B., Schütz, G.M.: Localization of shocks in driven diffusive systems without particle number conservation. Phys. Rev. E 67(6), 066117 (2003)

    Article  ADS  Google Scholar 

  15. Popkov, V., Schütz, G.M.: Steady-state selection in driven diffusive systems with open boundaries. Europhys. Lett. 48(3), 257 (1999)

    Article  ADS  Google Scholar 

  16. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}^d\). Commun. Math. Phys. 140(3), 417–448 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  18. Tian, B., Jiang, R., Ding, Z.-J., Hu, M.-B., Wu, Q.-S.: Phase diagrams of the Katz–Lebowitz–Spohn process on lattices with a junction. Phys. Rev. E 87(6), 062124 (2013)

    Article  ADS  Google Scholar 

  19. Tóth, B., Valkó, B.: Between equilibrium fluctuations and Eulerian scaling: perturbation of equilibrium for a class of deposition models. J. Stat. Phys. 109(1), 177–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tóth, I.: Hydrodynamic behavior of an interacting particle system (in Hungarian). Master’s Thesis, Budapest University of Technology and Economics, Department of Stochastics (2005)

  21. Tóth, I.: Simulation of a totally asymmetric attractive interacting particle system. http://github.com/tothi/riemann-nonconvex/ (2016)

Download references

Acknowledgments

Márton Balázs and Bálint Tóth acknowledge support from the Grants OTKA K100473 and OTKA K109684. B. T. also thanks support from the Leverhulme International Network Grant “Laplacians, Random Walks and Quantum Spin Systems”. We are indebted to an anonymous referee whose detailed and helpful comments greatly improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila László Nagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balázs, M., Nagy, A.L., Tóth, B. et al. Coexistence of Shocks and Rarefaction Fans: Complex Phase Diagram of a Simple Hyperbolic Particle System. J Stat Phys 165, 115–125 (2016). https://doi.org/10.1007/s10955-016-1600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1600-2

Keywords

Navigation