Skip to main content
Log in

A Class of Random Walks in Reversible Dynamic Environments: Antisymmetry and Applications to the East Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce via perturbation a class of random walks in reversible dynamic environments having a spectral gap. In this setting one can apply the mathematical results derived in Avena et al. (\(L^2\)-Perturbed Markov processes and applications to random walks in dynamic random environments, Preprint, 2016). As first results, we show that the asymptotic velocity is antisymmetric in the perturbative parameter and, for a subclass of random walks, we characterize the velocity and a stationary distribution of the environment seen from the walker as suitable series in the perturbative parameter. We then consider as a special case a random walk on the East model that tends to follow dynamical interfaces between empty and occupied regions. We study the asymptotic velocity and density profile for the environment seen from the walker. In particular, we determine the sign of the velocity when the density of the underlying East process is not 1 / 2, and we discuss the appearance of a drift in the balanced setting given by density 1 / 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For a reversible process, the Poincaré inequality is equivalent to the positive spectral gap of the generator in \(L^2\).

  2. More precisely, we assume that there exists R such that for \(|y|\ge R\), \(r(y,\cdot )\equiv 0\) and \(\hat{r}_\varepsilon (y,\cdot )\equiv 0\) and for all y, \(r(y,\cdot ),\hat{r}_\varepsilon (y,\cdot )\) have finite support.

  3. The East model belongs to the class of kinetically constrained spin models [14].

  4. In [9] we actually start with a configuration entirely filled to the left of the initial position of the front. The front is then at any time the left-most zero of the system. Due to the orientation of the East dynamics, however, the above definition gives a process with exactly the same properties.

References

  1. Aldous, D., Diaconis, P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107, 945–975 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Avena, L., Thomann, P.: Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures. J. Stat. Phys. 147, 1041–1067 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Avena, L., den Hollander, F., Redig, F.: Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion. Markov Process. Relat. Fields 16, 139–168 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Avena, L., den Hollander, F., Redig, F.: Law of large numbers for a class of random walks in dynamic random environments. Electron. J. Probab. 16, 587–617 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avena, L., dos Santos, R., Völlering, F.: A transient random walk driven by an exclusion process: regenerations, limit theorems and an Einstein relation. Latin Am. J. Probab. Math. Stat. (ALEA) 10(2), 693–709 (2013)

    MATH  Google Scholar 

  6. Avena, L., Franco, T., Jara, M., Völlering, F.: Symmetric exclusion as a random environment: hydrodynamic limits. Ann. Inst. Henri Poincaré 51, 901–916 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Avena, L., Blondel, O., Faggionato, A.: \(L^2\)-perturbed Markov processes and applications to random walks in dynamic random environments. Preprint (2016), arXiv:1602.06322

  8. Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)

    Article  ADS  Google Scholar 

  9. Blondel, O.: Front progression in the East model. Stoch. Process. Appl. 123(9), 3430–3465 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blondel, O.: Is there a breakdown of the Stokes–Einstein relation in kinetically constrained models at low temperature? Europhys. Lett. 107, 26005 (2014)

    Article  ADS  Google Scholar 

  11. Bodineau, T., Toninelli, C.: Activity phase transition for constrained dynamics. Commun. Math. Phys. 311, 357–396 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bodineau, T., Lecomte, V., Toninelli, C.: Finite size scaling of the dynamical free-energy in a kinetically constrained model. J. Stat. Phys. 147, 1–17 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media. Phys. Rep. 195, 127–293 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Kinetically constrained spin models. Probab. Theory Relat. Fields 140, 459–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chleboun, P., Faggionato, A., Martinelli, F.: Time scale separation and dynamic heterogeneity in the low temperature East model. Commun. Math. Phys. 328, 955–993 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. den Hollander, F., dos Santos, R.: Scaling of a random walk on a supercritical contact process. Ann. Inst. H. Poincaré Probab. Stat. 50, 1276–1300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. den Hollander, F., Kesten, H., Sidoravicius, V.: Random walk in a high density dynamic random environment. Indag. Math. (N.S.) 25(4), 785–799 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faggionato, A., Martinelli, F., Roberto, C., Toninelli, C.: Aging through hierarchical coalescence in the East model. Commun. Math. Phys. 309, 459–495 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Faggionato, A., Martinelli, F., Roberto, C., Toninelli, C.: The East model: recent results and new progresses. Markov Process. Relat. Fields 19, 407–452 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Ganguly, S., Lubetszky, E., Martinelli, F.: Cutoff for the East process. Commun. Math. Phys. 335, 1287–1322 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hilário, M., den Hollander, F., Sidoravicius, V., dos Santos, R.S., Teixeira, A.: Random walk on random walks. Electron. J. Probab. 20(95), 1–35 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Huveneers, F., Simenhaus, F.: Random walk driven by simple exclusion process. Electron. J. Probab. 20(105), 42 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Jack, R., Kelsey, D., Garrahan, J.P., Chandler, D.: Negative differential mobility of weakly driven particles in models of glass formers. Phys. Rev. E 78(1), 011506 (2008)

    Article  ADS  Google Scholar 

  24. Jäckle, J., Eisinger, S.: A hierarchically constrained Ising model. Z. Phys. B 84, 115–129 (1991)

    Article  ADS  MATH  Google Scholar 

  25. Komorowski, T., Olla, S.: On mobility and Einstein relation for tracers in time-mixing random environments. J. Stat. Phys. 118, 407–435 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liggett, T.M.: Interacting particle systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York (1985)

    Google Scholar 

  27. Mountford, T., Vares, M.E.: Random walks generated by equilibrium contact processes. Electron. J. Probab. 20(3), 1–17 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Redig, F., Völlering, F.: Random walks in dynamic random environments: a transference principle. Ann. Probab. 41, 3157–3180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sollich, P., Evans, M.R.: Glassy dynamics in the asymmetrically constrained kinetic Ising chain. Phys. Rev. E 68, 031504 (2003)

    Article  ADS  Google Scholar 

  30. Solomon, F.: Random walks in a random environment. Ann. Probab. 3, 1–31 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zeitouni, O.: Random walks in random environments. J. Phys. A Math. Gen. 39, 433–464 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

L. Avena has been supported by NWO Gravitation Grant 024.002.003-NETWORKS. The authors thank P. Thomann for providing the numerical experiments in Figs. 3 and 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriane Blondel.

Appendix: Useful Facts on the East model

Appendix: Useful Facts on the East model

Definition 3

(Graphical representation of the East model) Starting from a configuration \(\eta \in \Omega \), the East dynamics \((\eta _t)_{t\ge 0}\) can be constructed as follows. With every \(x\in {\mathbb Z} \) independently we associate a Poisson process with parameter 1 that will be called the (Poisson) clock at x. The process can then be constructed in the following way:

  • Check the constraint: if the clock at site x rings at time t, look at the constraint at x in \(\eta _t\), the configuration at time t.

  • If \(c^{\text {east}}_x(\eta _t)=1\), the constraint is satisfied and the occupation variable at site x is replaced by a Bernoulli variable of parameter \(\rho \) independent of all the rest. The ring at time t is said to be a legal ring.

  • If \(c^{\text {east}}_x(\eta _t)=0\), the constraint is not satisfied and the system is left unchanged.

The following lemma is a consequence of reversibility and the orientation property of the East model which we use to prove Proposition 4.2. We write \({\mathbb E} ^\mathrm{east}_{\eta }\) for the expectation of the East dynamics starting at \(\eta \), and we define \({\mathbb E} ^\mathrm{east}_{\nu _\rho } \) similarly.

Lemma 5.3

The following holds:

  1. 1.

    Let \(0\le t_1\le t_2\cdots \le t_k\) and let \(f_1,...,f_k\) be functions on \(\{0,1\}^{\mathbb Z} \) such that the convex envelopes of their supports \(\mathrm{Conv}( Supp(f_{1}) ), \dots , \mathrm{Conv} ( Supp(f_k) )\) are disjoint. Then

    $$\begin{aligned} {\mathbb E} ^\mathrm{east}_{\nu _\rho }\left[ f_1\left( \eta _{t_1}\right) \ldots f_k\left( \eta _{t_k}\right) \right] =\prod _{i=1}^k\nu _\rho \left( f_i\right) . \end{aligned}$$
  2. 2.

    Let \(0\le t_1\le t_2 \le \cdots \le t_k\), \(f_1,...,f_k\) functions on \(\{0,1\}^{\mathbb Z} \) and \(i_0\in \{1,...,k\}\) such that \(\nu _\rho (f_{i_0})=0\) and \(x <y\) for all \( x\in Supp(f_{i_0})\) and \( y\in \cup _{i\ne i_0}Supp(f_i)\) (i.e. the support of \(f_{i_0}\) is to the left of all the other supports). Then

    $$\begin{aligned} {\mathbb E} ^\mathrm{east}_{\nu _\rho }\left[ f_1\left( \eta _{t_1}\right) \ldots f_k\left( \eta _{t_k}\right) \right] =0. \end{aligned}$$
    (63)

Proof

The first statement is a consequence of the second one by iteration (let \(i_0\) be the index of the function with left-most support and apply the second statement replacing \(f_{i_0}\) by \(f_{i_0}-\nu _\rho (f_{i_0})\)).

Notice that by reversibility we can construct the process at equilibrium also for negative times by mirroring the graphical construction. The process obtained is invariant by time translation. In particular, we have

$$\begin{aligned} {\mathbb E} ^\mathrm{east}_{\nu _\rho }\left[ f_1\left( \eta _{t_1}\right) \ldots f_k\left( \eta _{t_k}\right) \right]= & {} {\mathbb E} ^\mathrm{east}_{\nu _\rho }\left[ f_1\left( \eta _{t_1-t_{i_0}}\right) \ldots f_k\left( \eta _{t_k-t_{i_0}}\right) \right] \\= & {} \nu _\rho \Big (f_{i_0}(\eta ){\mathbb E} ^\mathrm{east}_{\eta }\Big [\prod _{i\ne i_0}f_i\Big (\eta _{t_i-t_{i_0}}\Big )\Big ]\Big ). \end{aligned}$$

Now notice that \({\mathbb E} ^\mathrm{east}_{\eta }\left[ \prod _{i\ne i_0}f_i\left( \eta _{t_i-t_{i_0}}\right) \right] \) has disjoint support from \(f_{i_0}\) thanks to the orientation property of the East model. The two terms in the \(\nu _\rho \)-mean are therefore decorrelated. Hence the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avena, L., Blondel, O. & Faggionato, A. A Class of Random Walks in Reversible Dynamic Environments: Antisymmetry and Applications to the East Model. J Stat Phys 165, 1–23 (2016). https://doi.org/10.1007/s10955-016-1596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1596-7

Keywords

Navigation