Journal of Statistical Physics

, Volume 163, Issue 3, pp 568–575 | Cite as

Ground State Properties of Ising Chain with Random Monomer–Dimer Couplings

  • S. Bahareh Seyedein Ardebili
  • Reza Sepehrinia


We study analytically the one-dimensional Ising model with a random binary distribution of ferromagnetic and antiferromagnetic exchange couplings at zero temperature. We introduce correlations in the disorder by assigning a dimer of one type of coupling with probability x, and a monomer of the other type with probability \(1-x\). We find that the magnetization behaves differently from the original binary model. In particular, depending on which type of coupling comes in dimers, magnetization jumps vanish at a certain set of critical fields. We explain the results based on the structure of ground state spin configuration.


Magnetization Random monomer–dimer couplings Correlations 



We would like to thank Bernard Derrida for illuminating discussion and pointing out the possibility of flipping a combination of clusters at the critical fields. We also thank Ehsan Khatami for critical reading of the manuscript.


  1. 1.
    Derrida, B., Vannimenus, J., Pomeau, Y.: Simple frustrated systems: chains, strips and squares. J. Phys. C 11(23), 4749 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    Vilenkin, A.: Random-bond ising chain in a magnetic field at low temperatures. Phys. Rev. B 18(3), 1474 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    Chen, H.-H., Ma, S.: Low-temperature behavior of a one-dimensional random ising model. J. Stat. Phys. 29(4), 717–746 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Gardner, E., Derrida, B.: Zero temperature magnetization of a one-dimensional spin glass. J. Stat. Phys. 39(3–4), 367–377 (1985)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Nieuwenhuizen, ThM: Exact solutions for one-dimensional systems with short-range order. Europhys. Lett. 4(10), 1109 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Ballesteros, H.G., Parisi, G.: Site-diluted three-dimensional ising model with long-range correlated disorder. Phys. Rev. B 60(18), 12912 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Bagaméry, F., Turban, L., Iglói, F.: Two-dimensional ising model with self-dual biaxially correlated disorder. Phys. Rev. B 72(9), 09420 (2005)CrossRefGoogle Scholar
  8. 8.
    Rajabpour, M.A., Sepehrinia, R.: Explicit renormalization group for d = 2 random bond ising model with long-range correlated disorder. J. Stat. Phys. 130(4), 815–820 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Weinrib, A., Halperin, B.I.: Critical phenomena in systems with long-range-correlated quenched disorder. Phys. Rev. B 27(1), 413 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    Weinrib, A.: Long-range correlated percolation. Phys. Rev. B 29(1), 387 (1984)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Prudnikov, V.V., Prudnikov, P.V., Fedorenko, A.A.: Field-theory approach to critical behavior of systems with long-range correlated defects. Phys. Rev. B 62(13), 8777 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Crisanti, A., Paladin, G., Vulpiani, A.: Products of random matrices, 1993Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Bahareh Seyedein Ardebili
    • 1
  • Reza Sepehrinia
    • 2
    • 3
  1. 1.Department of Theoretical Physics and AstrophysicsUniversity of TabrizTabrizIran
  2. 2.Department of PhysicsUniversity of TehranTehranIran
  3. 3.School of PhysicsInstitute for Research in Fundamental Sciences, IPMTehranIran

Personalised recommendations