Advertisement

Journal of Statistical Physics

, Volume 163, Issue 3, pp 576–592 | Cite as

Reversible Reshaping of Supported Metal Nanoislands Under Reaction Conditions in a Minimalistic Lattice Model

  • A. Korobov
Article
  • 105 Downloads

Abstract

The shape of (nano)islands is among significant factors of the catalytic activity of supported catalysts. A lattice model of the reshaping under reaction conditions is suggested and studied by means of kinetic Monte Carlo simulations. It is rooted in experimental findings and is simplified as far as possible to still demonstrate reversible compact—ramified shape transitions. This simple model with complex behavior demonstrates several reshaping regimes and is considered as a possible sub-network of more realistic networks of heterogeneous catalytic reactions.

Keywords

Supported catalysts Shape transitions Ramified shapes Complexity Poisoning 

Notes

Acknowledgments

This research was partly supported by the Ukrainian Minister of Education and Science through Grant No 0113U002428.

References

  1. 1.
    Buendía, G.M., Elcure, G.A.: Comparison between different models for the catalytic oxidation of CO on a surface in the presence of non-desorbing impurities in the gas phase. J. Comput. Methods Sci. Eng. 14, 73–80 (2014)Google Scholar
  2. 2.
    Buendia, G.M., Rikvold, P.A.: Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption. Phys. Rev. E 88, 012132 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Bullara, D., De Decker, Y.: Chemical equilibrium on low dimensional supports: connecting the microscopic mechanism to the macroscopic observations. J. Stat. Phys. 161, 210–226 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chamberlin, T.: The method of multiple working hypotheses. Science 148, 754–759 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    Christopher, P., Line, S.: Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78–83 (2010)CrossRefGoogle Scholar
  6. 6.
    Daruka, I., Tersoff, J., Barabási, A.-L.: Shape transition in growth of strained islands. Phys. Rev. Lett. 82, 2753 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Deak, R., Neda, Z.: Kinetic Monte Carlo approach for triangular-shaped Pt islands on Pt(111) surfaces. Phys. Status Solidi B 249, 1709–1716 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Driver, S.M., Zhang, T., King, D.A.: Massively cooperative adsorbate-induced surface restructuring and nanocluster formation. Angew. Chem. Int. Ed. 46, 700–703 (2007)CrossRefGoogle Scholar
  9. 9.
    Einax, M., Dieterich, W., Maass, P.: Cluster growth on surfaces: densities, size distributions, and morphologies. Rev. Mod. Phys. 85, 921–939 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Evans, J.W., Thiel, P.A., Bartelt, M.C.: Morphological evolution during epitaxial growth: formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61, 1–128 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Ferrando, N., Gosalvez, M.A., Ayuela, A.: Evolutionary kinetic Monte Carlo: atomistic rates of surface-mediated processes from surface morphologies. J. Phys. Chem. 118, 11636–11648 (2014)Google Scholar
  12. 12.
    Garcia-Mota, M., Rieger, M., Reuter, K.: Ab initio prediction of the equilibrium shape of supported Ag nanoparticles on \(\alpha \)-Al\(_{2}\)O\(_{3}\) (0001). J. Catal. 321, 1–6 (2015)CrossRefGoogle Scholar
  13. 13.
    Gates, B.C.: Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995)CrossRefGoogle Scholar
  14. 14.
    Guo, W., Stamatakis, M., Vlachos, D.G.: Design principles of heteroepitaxial bimetallic catalysts. ACS Catal. 3, 2248–2255 (2013)CrossRefGoogle Scholar
  15. 15.
    Han, Y., Liu, D.J., Evans, J.W.: Real-time ab initio KMC simulation of the self-assembly and sintering of bimetallic epitaxial nanoclusters: Au+Ag on Ag(100). NANO Lett. 14, 4646–4652 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Topsoe, H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Hoenicke, G.L., De Andrade, M.F., Figueiredo, W.: Critical properties of the Ziff, Gulari, and Barshad (ZGB) model with inert sites. J. Chem. Phys. 141, 074709 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Horch, S., Lorensen, H.T., Helveg, S., Lagsgaard, L., Stensgaard, I., Jacobsen, K.W., Norskov, J.K., Besenbacher, F.: Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Kalff, M., Comsa, G., Michely, T.: How sensitive is epitaxial growth to adsorbates? Phys. Rev. Lett. 81, 1255–1258 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Khare, S.V., Einstein, T.L.: Brownian motion and shape fluctuations of single-layer adatom and vacancy clusters on surfaces: theory and simulations. Phys. Rev. B 54, 11752 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Korobov, A.: Kolmogorov-Johnson-Mehl-Avrami kinetics in different metrics. Phys. Rev. B 76, 085430 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Korobov, A.: Scaling properties of planar discrete Poisson-Voronoi tessellations with von Neumann neighborhoods constructed according to the nucleation and growth mechanism. Phys. Rev. E 89, 032405 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kratzer, M., Wrana, D., Szajna, K., Krok, F., Teichert, C.: Island shape anisotropy in organic thin film growth induced by ion-beam irradiated rippled surfaces. Phys. Chem. Chem. Phys. 16, 26112–26118 (2014)CrossRefGoogle Scholar
  24. 24.
    Krim, L., Bouferguene, A., Hoggan, P.E., Hammoutene, D.: A phenomenological Monte Carlo simulation of a two-step dimer/monomer surface reaction. Int. J. Mod. Phys. C 22, 1063–1079 (2011)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Liu, D.J., Evans, J.W.: Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces. Prog. Surf. Sci. 88, 393–521 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Madey, T.E., Chen, W., Wang, H., Kaghazchi, P., Jacob, T.: Nanoscale surface chemistry over faceted substrates: structure, reactivity and nanotemplates. Chem. Soc. Rev. 37, 2310–2327 (2008)CrossRefGoogle Scholar
  27. 27.
    Michailov, A.S., Ertl, G.: Nonequilibrium microstructures in reactive monolayers as soft matter systems. ChemPhysChem 10, 86–100 (2009)CrossRefGoogle Scholar
  28. 28.
    Michely, T., Krug, J.: Islands, mounds and atoms. Springer, Berlin (2004)CrossRefGoogle Scholar
  29. 29.
    Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)CrossRefGoogle Scholar
  30. 30.
    Noussiou, V.K., Provata, A.: Surface reconstruction in reactive dynamics: a kinetic Monte Carlo approach. Surf. Sci. 601, 2941–2951 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Noussiou, V.K., Provata, A.: Kinetic Monte Carlo simulations of the oscillatory CO oxidation at high pressures: the surface oxide model. Chem. Phys. 348, 11–20 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Provata, A., Noussiou, V.K.: Spatiotemporal oscillations and clustering in the Ziff-Gulari-Barshad model with surface reconstruction. Phys. Rev. E 72, 066108 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Reuter, K.: First principles kinetic Monte Carlo simulations for heterogeneous catalysis: concepts, status and frontiers. In: Deutschmann, O. (ed.) Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System. Wiley, New York (2012)Google Scholar
  34. 34.
    Sinha, I., Mukherjee, A.K.: First order phase transition in a modified Ziff- Gulari-Barshad model with self-oscillating reactant coverages. J. Stat. Phys. 146, 669–686 (2012)CrossRefMATHGoogle Scholar
  35. 35.
    Sinha, I., Mukherjee, A.K.: Kinetic Monte Carlo simulation of the oscillatory catalytic CO oxidation using a modified Ziff-Gulari-Barshad model. J. Phys. Conf. Ser. 490, 012048 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Sinha, I., Mukherjee, A.K.: Monte Carlo simulation of a surface oxide model of CO oxidation. Chem. Phys. Lett. 553, 30–35 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Somorjai, G.A., Park, J.Y.: Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure. J. Chem. Phys. 128, 182504 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Stamatakis, M., Vlachos, D.G.: Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulations: current status and frontiers. ACS Catal. 2, 2648–2663 (2012)CrossRefGoogle Scholar
  39. 39.
    Stasevich, T.J., Tao, C., Cullen, W.G., Williams, E.D., Einstein, T.L.: Impurity decoration for crystal shape control: C\(_{60}\) on Ag(111). Phys. Rev. Lett. 102, 085501 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Tanaka, K.: Surface nano-structuring by adsorption and chemical reactions. Materials 3, 4518–4549 (2010)CrossRefGoogle Scholar
  41. 41.
    Tao, F., Zhang, S., Nguyen, L., Zhang, X.: Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem. Soc. Rev. 41, 7980–7993 (2012)CrossRefGoogle Scholar
  42. 42.
    Thiel, P.A., Shen, M., Liu, D.J., Evans, J.W.: Adsorbate-enhanced transport of metals on metal surfaces: oxygen and sulfur on coinage metals. J. Vac. Sci. Technol. A 28, 1285–1298 (2010)CrossRefGoogle Scholar
  43. 43.
    Uzio, D., Berhault, G.: Factors governing the catalytic reactivity of metallic nanoparticles. Catal. Rev. 52, 106–131 (2010)CrossRefGoogle Scholar
  44. 44.
    Valdes-Perez, R.E., Zeigarnik, A.V.: How hard is mechanism elucidation in catalysis. J. Chem. Inf. Comput. Sci. 40, 833–838 (2000)CrossRefGoogle Scholar
  45. 45.
    Watanabe, Y.: Atomically precise cluster catalysis towards quantum controlled catalysts. Sci. Technol. Adv. Mater. 15, 063501 (2014)CrossRefGoogle Scholar
  46. 46.
    Wu, J., Wang, E.G., Varga, K., Liu, B.G., Pantelides, S.T., Zhang, Z.: Island shape selection in Pt(111) submonolayer homoepitaxy with or without CO as an adsorbate. Phys. Rev. Lett. 89, 146103 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Wu, Y.Q., Li, F.H., Cui, J., Lin, J.H., Wu, R., Qin, J., Zhu, C.Y., Fan, Y.L., Yang, X.J., Jiang, Z.M.: Shape change of SiGe islands with initial Si capping. Appl. Phys. Lett. 87, 223116 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Yu, W., Poroso, M.D., Chen, J.G.: Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012)CrossRefGoogle Scholar
  49. 49.
    Zhdanov, V.P.: Monte Carlo simulations of oscillations, chaos and pattern formation in heterogeneous catalytic reactions. Surf. Sci. Rep. 45, 231–326 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Chemistry DepartmentV. N. Karazin Kharkov National UniversityKharkivUkraine

Personalised recommendations