Journal of Statistical Physics

, Volume 161, Issue 6, pp 1508–1518 | Cite as

Vorticity Generation by Rough Walls in 2D Decaying Turbulence

  • Gábor Tóth
  • Imre M. Jánosi


In this work we present Lattice Boltzmann simulations of a decaying vortex array in a 2D rectangular domain, which is bounded by a random rough wall from one side. In order to separate the effects of the collisions with the rough wall, the opposite (smooth) rigid wall is placed at a larger distance from the center of the vortex array. Periodic boundary condition is imposed in the perpendicular direction. Well defined random roughness is generated by the widely studied Wolf–Villain surface growth algorithm. The main finding is that collisions with a rough wall generate excess vorticity compared with a smooth boundary, while the kinetic energy decreases monotonously. A proper measure is the integrated excess enstrophy, which exhibits an apparent maximum at an “optimal” roughness range. Numerical values of the excess enstrophy are very sensitive to a particular configuration (wall shape and vortex lattice randomization), however the “optimal” roughness exhibits surface features of similar characteristic sizes than that of the decaying vortices.


Lattice Boltzmann method Two-dimensional turbulence  Rough solid wall Enstrophy Wolf–Villain model 



The authors thank Tímea Haszpra for technical help. This work was partially supported by the Hungarian Science Foundation under Grant Number OTKA NK100296.


  1. 1.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  3. 3.
    Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRefADSGoogle Scholar
  4. 4.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)MATHCrossRefADSGoogle Scholar
  5. 5.
    Biswas, G., Eswaran, V. (eds.): Turbulent Flows: Fundamentals. Experiments and Modeling. Narosa Publishing, New Delhi, India (2002)Google Scholar
  6. 6.
    Bracco, A., McWilliams, J.C., Murante, G., Provenzale, A., Weiss, J.B.: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 2931–2941 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–51 (2012)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427–448 (2007)MATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 80, 5129–5132 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Clercx, H.J.H., Nielsen, A.H., Torres, D.J., Coutsias, E.A.: Two-dimensional turbulence in square and circular domains with no-slip walls. Eur. J. Mech. B - Fluids 20, 557–576 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Clercx, H.J.H., van Heijst, G.J.F.: Two-dimensional NavierStokes turbulence in bounded domains. Appl. Mech. Rev. 62, 020802 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Ding, L., Shi, W., Luo, H.: Numerical simulation of viscous flow over non-smooth surfaces. Comput. Math. Appl. 61, 3703–3710 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Filippova, O., Hänel, D.: Grid refinement for Lattice-BGK models. J. Comput. Phys. 147, 219–228 (1998)MATHCrossRefADSGoogle Scholar
  15. 15.
    Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2014)CrossRefADSGoogle Scholar
  16. 16.
    Flór, J.-B. (Ed.): Fronts, Waves and Vortices in Geophysical Flows. In: Lecture Notes in Physics, vol. 805. Springer, Berlin (2010)Google Scholar
  17. 17.
    Házi, G., Tóth, G.: Lattice Boltzmann simulation of two-dimensional wall bounded turbulent flow. Int. J. Mod. Phys. C 21, 669–680 (2010)MATHCrossRefADSGoogle Scholar
  18. 18.
    Házi, G., Tóth, G.: Regional statistics in confined two-dimensional decaying turbulence. Phil. Trans. R. Soc. A 369, 2555–2564 (2011)MATHCrossRefADSGoogle Scholar
  19. 19.
    He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)CrossRefADSGoogle Scholar
  20. 20.
    Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619 (1980)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., Sreenivasan, K.R.: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. Dover, Mineola, NY (2007)Google Scholar
  24. 24.
    Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.: Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes: theory and simulations. Phys. Rev. E 67, 066703 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Schneider, K., Farge, M.: Decaying two-dimensional turbulence in a circular container. Phys. Rev. Lett. 95, 244502 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Šmilauer, P., Kotrla, M.: Crossover effects in the Wolf–Villain model of epitaxial growth in 1+1 and 2+1 dimensions. Phys. Rev. B 49, 5769–5772 (1994)CrossRefADSGoogle Scholar
  27. 27.
    Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Reports 362, 1–62 (2002)MATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Taylor, J.B., Borchardt, M., Helander, P.: Interacting vortices and spin-up in two-dimensional turbulence. Phys. Rev. Lett. 102, 124505 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Toppaladoddi, S., Succi, S., Wettlaufer, J.S.: Turbulent transport processes at rough surfaces with geophysical applications. Proc. IUTAM 15, 34–40 (2015)CrossRefGoogle Scholar
  30. 30.
    Toppaladoddi, S., Succi, S., Wettlaufer, J.S.: Tailoring boundary geometry to optimize heat transport in turbulent convection. arXiv:1410.1959v5 [physics.flu-dyn] (2015)
  31. 31.
    Tóth, G., Házi, G.: Merging of shielded Gaussian vortices and formation of a tripole at low Reynolds numbers. Phys. Fluids 22, 053101 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Tóth, G., Házi, G.: Two-dimensional decaying turbulence in confined geometries. Int. J. Model. Simul. Sci. Comput. 5, 1441008 (2014)CrossRefGoogle Scholar
  33. 33.
    Valcke, S., Verron, J.: Interactions of baroclinic isolated vortices: the dominant effect of shielding. J. Phys. Oceanogr. 27, 524–541 (1997)CrossRefADSGoogle Scholar
  34. 34.
    van Heijst, G.J.F., Clercx, H.J.H., Molenaar, D.: The effects of solid boundaries on confined two-dimensional turbulence. J. Fluid Mech. 554, 411–431 (2006)MATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    von Larcher, Th, Williams, P.D. (eds.): Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations. Wiley, Hoboken, NJ (2014)Google Scholar
  36. 36.
    Wang, C.Y.: Flow over a surface with parallel grooves. Phys. Fluids 15, 1114–1121 (2003)CrossRefADSGoogle Scholar
  37. 37.
    Weiss, J.B., McWilliams, J.C.: Temporal scaling behavior of decaying two-dimensional turbulence. Phys. Fluids A 5, 608–621 (1993)MATHCrossRefADSGoogle Scholar
  38. 38.
    Wolf, D.E., Villain, J.: Growth with surface diffusion. Europhys. Lett. 13, 389–394 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemEötvös Loránd UniversityBudapestHungary

Personalised recommendations