Skip to main content
Log in

Vorticity Generation by Rough Walls in 2D Decaying Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work we present Lattice Boltzmann simulations of a decaying vortex array in a 2D rectangular domain, which is bounded by a random rough wall from one side. In order to separate the effects of the collisions with the rough wall, the opposite (smooth) rigid wall is placed at a larger distance from the center of the vortex array. Periodic boundary condition is imposed in the perpendicular direction. Well defined random roughness is generated by the widely studied Wolf–Villain surface growth algorithm. The main finding is that collisions with a rough wall generate excess vorticity compared with a smooth boundary, while the kinetic energy decreases monotonously. A proper measure is the integrated excess enstrophy, which exhibits an apparent maximum at an “optimal” roughness range. Numerical values of the excess enstrophy are very sensitive to a particular configuration (wall shape and vortex lattice randomization), however the “optimal” roughness exhibits surface features of similar characteristic sizes than that of the decaying vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  ADS  Google Scholar 

  4. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  ADS  Google Scholar 

  5. Biswas, G., Eswaran, V. (eds.): Turbulent Flows: Fundamentals. Experiments and Modeling. Narosa Publishing, New Delhi, India (2002)

    Google Scholar 

  6. Bracco, A., McWilliams, J.C., Murante, G., Provenzale, A., Weiss, J.B.: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 2931–2941 (2000)

    Article  ADS  Google Scholar 

  7. Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–51 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427–448 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 80, 5129–5132 (1998)

    Article  ADS  Google Scholar 

  11. Clercx, H.J.H., Nielsen, A.H., Torres, D.J., Coutsias, E.A.: Two-dimensional turbulence in square and circular domains with no-slip walls. Eur. J. Mech. B - Fluids 20, 557–576 (2001)

    Article  MATH  Google Scholar 

  12. Clercx, H.J.H., van Heijst, G.J.F.: Two-dimensional NavierStokes turbulence in bounded domains. Appl. Mech. Rev. 62, 020802 (2009)

    Article  ADS  Google Scholar 

  13. Ding, L., Shi, W., Luo, H.: Numerical simulation of viscous flow over non-smooth surfaces. Comput. Math. Appl. 61, 3703–3710 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Filippova, O., Hänel, D.: Grid refinement for Lattice-BGK models. J. Comput. Phys. 147, 219–228 (1998)

    Article  MATH  ADS  Google Scholar 

  15. Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2014)

    Article  ADS  Google Scholar 

  16. Flór, J.-B. (Ed.): Fronts, Waves and Vortices in Geophysical Flows. In: Lecture Notes in Physics, vol. 805. Springer, Berlin (2010)

  17. Házi, G., Tóth, G.: Lattice Boltzmann simulation of two-dimensional wall bounded turbulent flow. Int. J. Mod. Phys. C 21, 669–680 (2010)

    Article  MATH  ADS  Google Scholar 

  18. Házi, G., Tóth, G.: Regional statistics in confined two-dimensional decaying turbulence. Phil. Trans. R. Soc. A 369, 2555–2564 (2011)

    Article  MATH  ADS  Google Scholar 

  19. He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  ADS  Google Scholar 

  20. Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  ADS  Google Scholar 

  21. Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  22. Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., Sreenivasan, K.R.: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)

    Article  ADS  Google Scholar 

  23. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. Dover, Mineola, NY (2007)

    Google Scholar 

  24. Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.: Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes: theory and simulations. Phys. Rev. E 67, 066703 (2003)

    Article  ADS  Google Scholar 

  25. Schneider, K., Farge, M.: Decaying two-dimensional turbulence in a circular container. Phys. Rev. Lett. 95, 244502 (2005)

    Article  ADS  Google Scholar 

  26. Šmilauer, P., Kotrla, M.: Crossover effects in the Wolf–Villain model of epitaxial growth in 1+1 and 2+1 dimensions. Phys. Rev. B 49, 5769–5772 (1994)

    Article  ADS  Google Scholar 

  27. Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Reports 362, 1–62 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Taylor, J.B., Borchardt, M., Helander, P.: Interacting vortices and spin-up in two-dimensional turbulence. Phys. Rev. Lett. 102, 124505 (2009)

    Article  ADS  Google Scholar 

  29. Toppaladoddi, S., Succi, S., Wettlaufer, J.S.: Turbulent transport processes at rough surfaces with geophysical applications. Proc. IUTAM 15, 34–40 (2015)

    Article  Google Scholar 

  30. Toppaladoddi, S., Succi, S., Wettlaufer, J.S.: Tailoring boundary geometry to optimize heat transport in turbulent convection. arXiv:1410.1959v5 [physics.flu-dyn] (2015)

  31. Tóth, G., Házi, G.: Merging of shielded Gaussian vortices and formation of a tripole at low Reynolds numbers. Phys. Fluids 22, 053101 (2010)

    Article  ADS  Google Scholar 

  32. Tóth, G., Házi, G.: Two-dimensional decaying turbulence in confined geometries. Int. J. Model. Simul. Sci. Comput. 5, 1441008 (2014)

    Article  Google Scholar 

  33. Valcke, S., Verron, J.: Interactions of baroclinic isolated vortices: the dominant effect of shielding. J. Phys. Oceanogr. 27, 524–541 (1997)

    Article  ADS  Google Scholar 

  34. van Heijst, G.J.F., Clercx, H.J.H., Molenaar, D.: The effects of solid boundaries on confined two-dimensional turbulence. J. Fluid Mech. 554, 411–431 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. von Larcher, Th, Williams, P.D. (eds.): Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations. Wiley, Hoboken, NJ (2014)

    Google Scholar 

  36. Wang, C.Y.: Flow over a surface with parallel grooves. Phys. Fluids 15, 1114–1121 (2003)

    Article  ADS  Google Scholar 

  37. Weiss, J.B., McWilliams, J.C.: Temporal scaling behavior of decaying two-dimensional turbulence. Phys. Fluids A 5, 608–621 (1993)

    Article  MATH  ADS  Google Scholar 

  38. Wolf, D.E., Villain, J.: Growth with surface diffusion. Europhys. Lett. 13, 389–394 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Tímea Haszpra for technical help. This work was partially supported by the Hungarian Science Foundation under Grant Number OTKA NK100296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre M. Jánosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, G., Jánosi, I.M. Vorticity Generation by Rough Walls in 2D Decaying Turbulence. J Stat Phys 161, 1508–1518 (2015). https://doi.org/10.1007/s10955-015-1375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1375-x

Keywords

Navigation