Advertisement

Journal of Statistical Physics

, Volume 161, Issue 4, pp 942–964 | Cite as

Grand Canonical Versus Canonical Ensemble: Universal Structure of Statistics and Thermodynamics in a Critical Region of Bose–Einstein Condensation of an Ideal Gas in Arbitrary Trap

  • S. V. Tarasov
  • Vl. V. Kocharovsky
  • V. V. Kocharovsky
Article

Abstract

We find a self-similar analytical solution for the grand-canonical-ensemble (GCE) statistics and thermodynamics in the critical region of Bose–Einstein condensation. It is valid for an arbitrary trap, loaded with an ideal gas, in the thermodynamic limit. We show that for the quantities, changing by a finite amount across the critical region, the exact GCE result differs from the corresponding canonical-ensemble result by a factor on the order of unity even in the thermodynamic limit. Thus, a widely used GCE approach does not describe correctly the critical phenomena at the phase transition for the actual systems with a fixed number of particles and yields only an asymptotics far outside the critical region.

Keywords

Bose–Einstein condensation Critical phenomena Critical region Grand canonical ensemble Canonical ensemble Mesoscopic system 

Notes

Acknowledgments

A support from RFBR (Grant 12-02-00855-a), Program of fundamental research of the Physical Science Branch of the Russian Academy of Science (section III.7) and the Council on grants of the President of the Russian Federation for support of the leading scientifc schools of the Russian Federation (Grant HIII-1041.2014.2) is acknowledged.

References

  1. 1.
    Aizenmann, M., Goldstein, S., Lebowitz, J.L.: Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit. Commun. Math. Phys. 62, 279–302 (1978)CrossRefADSGoogle Scholar
  2. 2.
    Alekseev, V.A.: Statistics of mesoscopic ensembles of bosons and fermions. JETP 112, 932–938 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Andersen, J.O.: Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599–639 (2004)MATHCrossRefADSGoogle Scholar
  4. 4.
    Bagnato, V., Pritchard, D.E., Kleppner, D.: Bose–Einstein condensation in an external potential. Phys. Rev. A 35, 4354–4358 (1987)CrossRefADSGoogle Scholar
  5. 5.
    Balazs, N., Bergeman, T.: Statistical mechanics of ideal Bose atoms in a harmonic trap. Phys. Rev. A 58, 2359–2372 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Beau, M., Zagrebnov, V.A.: The second critical density and anisotropic generalised condensation. Condens. Matter Phys. 13, 23003 (2010)CrossRefGoogle Scholar
  7. 7.
    Bedingham, D.: Bose–Einstein condensation in the canonical ensemble. Phys. Rev. D 68, 105007 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Berrada, T., van Frank, S., Bücker, R., Schmunn, T., Schaff, J.-F., Schmiedmayer, J.: Integrated Mach–Zehnder interferometer for Bose–Einstein condensates. J. Nat. Commun. 4, 2077–2084 (2013)ADSGoogle Scholar
  9. 9.
    Bücker, R., Grond, J., Manz, S., et al.: Twin-atom beams. Nat. Phys. 7, 608–611 (2011)CrossRefGoogle Scholar
  10. 10.
    Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Chatterjee, S., Diaconis, P.: Fluctuations of the Bose–Einstein condensate. J. Phys. A: Math. Theor. 47, 085201 (2014)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Costeniuc, M., Ellis, R.S., Touchette, H., Turkington, B.: The generalized canonical ensemble and its universal equivalence with the microcanonical ensemble. J. Stat. Phys. 119, 1283–1329 (2005)MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Damle, K., Senthil, T., Majumdar, S.N., Sachdev, S.: Phase transition of a Bose gas in a harmonic potential. Europhys. Lett. 36, 7–12 (1996)CrossRefADSGoogle Scholar
  15. 15.
    Davis, K.B., Mewes, M.O., Andrews, M.V., Van Druten, N., Durfee, D., Kurn, D., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)CrossRefADSGoogle Scholar
  16. 16.
    De Groot, S.R., Hooyman, G.J.: On the Bose–Einstein condensation. Proc. R. Soc. Lond. Math. Phys. Sci. A 203, 266–286 (1950)MATHCrossRefADSGoogle Scholar
  17. 17.
    Desbuquois, R., Chomaz, L., Yefsah, T., Leonard, J., Beugnon, J., Weitenberg, C., Dalibard, J.: Superfluid behaviour of a two-dimensional Bose gas. Nat. Phys. 8, 645–648 (2012)CrossRefGoogle Scholar
  18. 18.
    Dobrushin, R.L., Tirozzi, B.: The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. 54, 173–192 (1977)MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Donner, T., Ritter, S., Bourdel, T., Öttl, A., Köhl, M., Esslinger, T.: Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999–1064 (2000)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Fedichev, P.O., Shlyapnikov, G.V.: Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas. Phys. Rev. A 58, 3146–3158 (1998)CrossRefADSGoogle Scholar
  22. 22.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)Google Scholar
  23. 23.
    Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics. University Press, Cambridge (1949)MATHGoogle Scholar
  24. 24.
    Gajda, M., Rzazewski, K.: Fluctuations of Bose–Einstein condensate. Phys. Rev. Lett. 78, 2686–2689 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Gaunt, A.L., Fletcher, R.J., Smith, R.P., Hadzibabic, Z.: A superheated Bose-condensed gas. Nat. Phys. 9, 271–274 (2013)CrossRefGoogle Scholar
  26. 26.
    Gaunt, A.L., Schmidutz, T.F., Gotlibovych, I., Smith, R.P., Hadzibabic, Z.: Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013)CrossRefADSGoogle Scholar
  27. 27.
    Ginzburg, V.L.: Second-order phase transitions. Sov. Phys. Solid State 2, 1123 (1960)MathSciNetGoogle Scholar
  28. 28.
    Glaum, K., Kleinert, H., Pelster, A.: Condensation of ideal Bose gas confined in a box within a canonical ensemble. Phys. Rev. A 76, 063604 (2007)CrossRefADSGoogle Scholar
  29. 29.
    Gomez, L.F., Ferguson, K.R., Cryan, J.P., et al.: Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014)CrossRefADSGoogle Scholar
  30. 30.
    Griffin, A., Nikuni, T., Zaremba, E.: Bose-Condensed Gases at Finite Temperatures. Cambridge University Press, Cambridge (2009)MATHCrossRefGoogle Scholar
  31. 31.
    Grossmann, S., Holthaus, M.: \(\lambda \)-Transition to the Bose–Einstein condensate. Z. Naturforsch. 50a, 921–930 (1995)ADSGoogle Scholar
  32. 32.
    Grossmann, S., Holthaus, M.: Microcanonical fluctuations of a Bose systems ground state occupation number. Phys. Rev. E 54, 3495–3498 (1996)CrossRefADSGoogle Scholar
  33. 33.
    Grossmann, S., Holthaus, M.: Fluctuations of the particle number in a trapped Bose–Einstein condensate. Phys. Rev. Lett. 79, 3557–3560 (1997)CrossRefADSGoogle Scholar
  34. 34.
    Grossmann, S., Holthaus, M.: Maxwell’s Demon at work: Two types of Bose condensate fluctuations in power-law traps. Opt. Express 1, 262–271 (1997)CrossRefADSGoogle Scholar
  35. 35.
    Grossmann, S., Holthaus, M.: From number theory to statistical mechanics: Bose–Einstein condensation in isolated traps. Chaos Solitons Fractals 10, 795–804 (1999)CrossRefGoogle Scholar
  36. 36.
    Hänsel, W., Hommelhoff, P., Hänsch, T.W., Reichel, J.: Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)CrossRefADSGoogle Scholar
  37. 37.
    Herzog, C., Olshanii, M.: Trapped Bose gas: the canonical versus grand canonical statistics. Phys. Rev. A 55, 3254–3256 (1997)CrossRefADSGoogle Scholar
  38. 38.
    Hill, T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York (1956)MATHGoogle Scholar
  39. 39.
    Holthaus, M., Kalinowski, E., Kirsten, K.: Canonical vs. microcanonical ensemble. Ann. Phys. 270, 198–230 (1998)MATHMathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Holthaus, M., Kapale, K.T., Kocharovsky, V.V., Scully, M.O.: Master equation vs. partition function: canonical statistics of ideal Bose–Einstein condensates. Physica A 300, 433–467 (2001)MATHMathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Hutchinson, D.A.W., Zaremba, E., Griffin, A.: Finite temperature excitations of a trapped Bose gas. Phys. Rev. Lett. 78, 1842–1845 (1997)CrossRefADSGoogle Scholar
  42. 42.
    Jaouadi, A., Telmini, M., Charron, E.: Bose–Einstein condensation with a finite number of particles in a power-law trap. Phys. Rev. A 83, 023616 (2011)CrossRefADSGoogle Scholar
  43. 43.
    Kastner, M.: Nonequivalence of ensembles in the Curie–Weiss anisotropic quantum Heisenberg model. J. Stat. Mech. 2010(07), P07006 (2010)CrossRefGoogle Scholar
  44. 44.
    Ketterle, W., Van Druten, N.J.: Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656–660 (1996)CrossRefADSGoogle Scholar
  45. 45.
    Khinchin, A.Y.: Mathematical Foundations of Statistical Mechanics. Dover, New York (1949)MATHGoogle Scholar
  46. 46.
    Kirkpatrick, T.R., Dorfman, J.R.: Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58, 301–331 (1985)CrossRefADSGoogle Scholar
  47. 47.
    Kirkpatrick, T.R., Dorfman, J.R.: Transport coefficients in a dilute but condensed Bose gas. J. Low Temp. Phys. 58, 399–415 (1985)CrossRefADSGoogle Scholar
  48. 48.
    Kirsten, K., Toms, D.J.: Bose–Einstein condensation in arbitrarily shaped cavities. Phys. Rev. E 59, 158–167 (1999)CrossRefADSGoogle Scholar
  49. 49.
    Klünder, B., Pelster, A.: Systematic semiclassical expansion for harmonically trapped ideal Bose gases. Eur. Phys. J. B 68, 457–465 (2009)CrossRefADSGoogle Scholar
  50. 50.
    Kocharovsky, V.V., Kocharovsky, Vl.V.: Microscopic theory of a phase transition in a critical region: Bose–Einstein condensation in an interacting gas. Phys. Lett. A 379, 466–470 (2015)Google Scholar
  51. 51.
    Kocharovsky, V.V., Kocharovsky, VI.V.: Analytical theory of mesoscopic Bose–Einstein condensation in an ideal gas. Phys. Rev. A 81, 033615 (2010)Google Scholar
  52. 52.
    Kocharovsky, V.V., Kocharovsky, Vl.V.: Self-similar analytical solution of the critical fluctuations problem for the Bose–Einstein condensation in an ideal gas. J. Phys. A 43, 225001 (2010)Google Scholar
  53. 53.
    Kocharovsky, V.V., Kocharovsky, Vl.V., Holthaus, M., Raymond Ooi, C., Svidzinsky, A., Ketterle, W., Scully, M.O.: Fluctuations in ideal and interacting Bose–Einstein condensates: from the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles. Adv. At. Mol. Opt. Phys. 53, 291–411 (2006)Google Scholar
  54. 54.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1. Pergamon, Oxford (1981)Google Scholar
  55. 55.
    Landsberg, P.T.: On Bose–Einstein condensation. Proc. Camb. Philos. Soc. Math. Phys. Sci. 50, 65–76 (1954)MATHMathSciNetCrossRefADSGoogle Scholar
  56. 56.
    Landsberg, P.T.: Thermodynamics and Statistical Mechanics. Oxford University Press, Oxford (1978); corrected ed.: Courier Dover Public., New York (2014)Google Scholar
  57. 57.
    Levanyuk, A.: Contribution to the theory of light scattering near the 2nd-order phase-transition points. Sov. Phys. JETP-USSR 9, 571–576 (1959)MATHGoogle Scholar
  58. 58.
    Lewis, J.T., Pfister, C.-E., Sullivan, W.G.: The equivalence of ensembles for lattice systems: some examples and a counterexample. J. Stat. Phys. 77, 397–419 (1994)MATHMathSciNetCrossRefADSGoogle Scholar
  59. 59.
    Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics, Part 2. Pergamon, Oxford (1981)Google Scholar
  60. 60.
    London, F.: On the Bose–Einstein condensation. Phys. Rev. 54, 947–954 (1938)MATHCrossRefADSGoogle Scholar
  61. 61.
    Martin-Löf, A.: Statistical Mechanics and the Foundations of Thermodynamics. Springer, Berlin (1979)Google Scholar
  62. 62.
    Martin-Löf, A.: The equivalence of ensembles and Gibbs phase rule for classical lattice systems. J. Stat. Phys. 20, 557–569 (1979)CrossRefADSGoogle Scholar
  63. 63.
    Mimoun, E., De Sarlo, L., Jacob, D., Dalibard, J., Gerbier, F.: Fast production of ultracold sodium gases using light-induced desorption and optical trapping. Phys. Rev. A 81, 023631 (2010)CrossRefADSGoogle Scholar
  64. 64.
    Mullin, W.J., Sakhel, A.R.: Generalized Bose–Einstein condensation. J. Low Temp. Phys. 166, 125–150 (2012)CrossRefADSGoogle Scholar
  65. 65.
    Napolitano, R., De Luca, J., Bagnato, V.S., Marques, G.C.: Effect of a finite number of particles in the Bose–Einstein condensation of a trapped gas. Phys. Rev. A 55, 3954–3956 (1997)CrossRefADSGoogle Scholar
  66. 66.
    Navez, P., Bitouk, D., Gajda, M., Idziaszek, Z., Rzazewski, K.: Fourth statistical ensemble for the Bose–Einstein condensate. Phys. Rev. Lett. 79, 1789–1792 (1997)CrossRefADSGoogle Scholar
  67. 67.
    Patashinskii, A.Z., Pokrovskii, V.L.: Fluctuation Theory of Phase Transitions. Nauka, Moscow (1982)Google Scholar
  68. 68.
    Pathria, R.K.: Bose–Einstein condensation of a finite number of particles confined to harmonic traps. Phys. Rev. A 58, 1490–1495 (1998)CrossRefADSGoogle Scholar
  69. 69.
    Pelissetto, A., Vicari, E.: Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002)MATHMathSciNetCrossRefADSGoogle Scholar
  70. 70.
    Perrin, A., Bücker, R., Manz, S., Betz, T., Koller, C., Plisson, T., Schumm, T., Schmiedmayer, J.: Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold. Nat. Phys. 8, 195–198 (2012)CrossRefGoogle Scholar
  71. 71.
    Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. International Series of Monographs on Physics. Clarendon Press, Oxford (2003)Google Scholar
  72. 72.
    Pons, M., del Campo, A., Muga, J.G., Raizen, M.G.: Preparation of atomic Fock states by trap reduction. Phys. Rev. A 79, 033629 (2009)CrossRefADSGoogle Scholar
  73. 73.
    Pule, J.V., Zagrebnov, V.A.: The canonical perfect Bose gas in casimir boxes. J. Math. Phys. 45, 3565–3583 (2004)MATHMathSciNetCrossRefADSGoogle Scholar
  74. 74.
    Reichl, L.E., Gust, E.D.: Transport theory for a dilute Bose–Einstein condensate. Phys. Rev. A 88, 053603 (2013)CrossRefADSGoogle Scholar
  75. 75.
    Reif, F.: Fundamentals in Thermal Physics. McGraw-Hill, New York (1965)Google Scholar
  76. 76.
    Riedel, M.F., Böhi, P., Li, Y., Hänsch, T.W., Sinatra, A., Treutlein, P.: Atomchip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010)CrossRefADSGoogle Scholar
  77. 77.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969)MATHGoogle Scholar
  78. 78.
    Salasnich, L.: Ideal quantum gases in D-dimensional space and power-law potentials. J. Math. Phys. 41, 8016–8024 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  79. 79.
    Schrödinger, E.: Statistical Thermodynamics. Courier Dover Publications, Dover (1989)MATHGoogle Scholar
  80. 80.
    Shi, H., Griffin, A.: Finite-temperature excitations in a dilute Bose-condensed gas. Phys. Rep. 304, 1–87 (1998)CrossRefADSGoogle Scholar
  81. 81.
    Sinner, A., Schütz, F., Kopietz, P.: Landau functions for noninteracting bosons. Phys. Rev. A 74, 023608 (2006)CrossRefADSGoogle Scholar
  82. 82.
    Su, G., Chen, J.: Bose–Einstein condensation of a finite-size Bose system. Eur. J. Phys. 31, 143–150 (2010)MATHCrossRefGoogle Scholar
  83. 83.
    Tarasov, S.V., Kocharovsky, Vl.V., Kocharovsky, V.V.: Universal scaling in the statistics and thermodynamics of a Bose–Einstein condensation of an ideal gas in an arbitrary trap. Phys. Rev. A 90, 033605 (2014)Google Scholar
  84. 84.
    Tarasov, S.V., Kocharovsky, VI.V., Kocharovsky, V.V.: Universal fine structure of the specific heat at the critical \(\lambda \)-point for an ideal Bose gas in an arbitrary trap. J. Phys. A 47, 415003 (2014)Google Scholar
  85. 85.
    Touchette, H.: Ensemble equivalence for general many-body systems. Europhys. Lett. 96, 50010 (2011)CrossRefADSGoogle Scholar
  86. 86.
    Toms, D.J.: Statistical mechanics of an ideal Bose gas in a confined geometry. J. Phys. A 39, 713–722 (2006)MATHMathSciNetCrossRefADSGoogle Scholar
  87. 87.
    Van den Berg, M., Lewis, J.T.: On generalized condensation in the free boson gas. Physica A 110, 550–564 (1982)MathSciNetCrossRefADSGoogle Scholar
  88. 88.
    Van den Berg, M., Lewis, J.T., Pule, J.V.: A general theory of Bose–Einstein condensation. Helv. Phys. Acta 59, 1271–1288 (1986)MathSciNetGoogle Scholar
  89. 89.
    Van Druten, N.J., Ketterle, W.: Two-step condensation of the ideal Bose gas in highly anisotropic traps. Phys. Rev. Lett. 79, 549–552 (1997)CrossRefADSGoogle Scholar
  90. 90.
    Weichman, P.B., Rasolt, M., Fisher, M.E., Stephen, M.J.: Criticality and superfluidity in a dilute Bose fluid. Phys. Rev. B 33, 4632–4663 (1986)CrossRefADSGoogle Scholar
  91. 91.
    Weiss, C., Wilkens, M.: Particle number counting statistics in ideal Bose gases. Opt. Express 1, 272–283 (1997)CrossRefADSGoogle Scholar
  92. 92.
    Weiss, C., Holthaus, M.: Asymptotics of the number partitioning distribution. Europhys. Lett. 59, 486 (2002)CrossRefADSGoogle Scholar
  93. 93.
    Weiss, C., Block, M., Holthaus, M., Schmieder, G.: Cumulants of partitions. J. Phys. A 36, 1827–1844 (2003)MATHMathSciNetCrossRefADSGoogle Scholar
  94. 94.
    Wilkens, M., Weiss, C.: Particle number fluctuations in an ideal Bose gas. J. Mod. Optics 44, 1801–1814 (1997)MATHMathSciNetCrossRefADSGoogle Scholar
  95. 95.
    Zagrebnov, V.A., Papoyan, V.V.: Ensemble equivalence problem for Bose systems (nonideal Bose gas). Theor. Math. Phys. 69, 420–438 (1987)MathSciNetGoogle Scholar
  96. 96.
    Zassenhaus, G.M., Reppy, J.D.: Lambda point in the \(^4He\)-vycor system: a test of hyperuniversality. Phys. Rev. Lett. 83, 4800–4803 (1999)CrossRefADSGoogle Scholar
  97. 97.
    Ziff, R.M., Uhlenbeck, G.E., Kac, M.: The ideal Bose–Einstein gas, revisited. Phys. Rep. 32, 169–248 (1977)MathSciNetCrossRefADSGoogle Scholar
  98. 98.
    Zubarev, D.N.: On equivalence of Gibbs Ensembles. Scientific Reports of the Advanced School, Series Phys.-Math. Sciences 6, 169 (1958) [in Russian]Google Scholar
  99. 99.
    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. V. Tarasov
    • 1
    • 2
  • Vl. V. Kocharovsky
    • 1
    • 2
  • V. V. Kocharovsky
    • 1
    • 3
  1. 1.Institute of Applied PhysicsRussian Academy of ScienceNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations