Journal of Statistical Physics

, Volume 162, Issue 5, pp 1365–1382 | Cite as

Detecting Concentration Changes with Cooperative Receptors

  • Stefano Bo
  • Antonio Celani


Cells constantly need to monitor the state of the environment to detect changes and timely respond. The detection of concentration changes of a ligand by a set of receptors can be cast as a problem of hypothesis testing, and the cell viewed as a Neyman–Pearson detector. Within this framework, we investigate the role of receptor cooperativity in improving the cell’s ability to detect changes. We find that cooperativity decreases the probability of missing an occurred change. This becomes especially beneficial when difficult detections have to be made. Concerning the influence of cooperativity on how fast a desired detection power is achieved, we find in general that there is an optimal value at finite levels of cooperation, even though easy discrimination tasks can be performed more rapidly by noncooperative receptors.


Sensing Cooperativity Hypothesis testing Stochastic processes 



S. B. acknowledges ICTP and the Physics Department and INFN of the University of Turin for hospitality.


  1. 1.
    Aquino, G., Clausznitzer, D., Tollis, S., Endres, R.G.: Optimal receptor-cluster size determined by intrinsic and extrinsic noise. Phys. Rev. E 83(2), 021914 (2011)CrossRefADSGoogle Scholar
  2. 2.
    Aquino, G., Tweedy, L., Heinrich, D., Endres, R.G.: Memory improves precision of cell sensing in fluctuating environments. Sci. Rep. 4, 5688 (2014)CrossRefADSGoogle Scholar
  3. 3.
    Barato, A.C., Hartich, D., Seifert, U.: Information-theoretic versus thermodynamic entropy production in autonomous sensory networks. Phys. Rev. E 87, 042104 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Barato, A.C., Hartich, D., Seifert, U.: Efficiency of cellular information processing. New J. Phys. 16, 103024 (2014)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Barato, A.C., Seifert, U.: Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114(15), 158101 (2015)CrossRefADSGoogle Scholar
  6. 6.
    Berg, H., Purcell, E.: Physics of chemoreception. Biophys. J. 20, 193 (1977)CrossRefADSGoogle Scholar
  7. 7.
    Bialek, W.: Biophysics: Searching for Principles. Princeton University Press, Princeton (2012)Google Scholar
  8. 8.
    Bialek, W., Setayeshgar, S.: Physical limits to biochemical signaling. Proc. Natl. Acad. Sci. USA 102, 10040 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Bialek, W., Setayeshgar, S.: Cooperativity, sensitivity, and noise in biochemical signaling. Phys. Rev. Lett. 100(25), 258101 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Bowsher, C.G., Swain, P.S.: Identifying sources of variation and the flow of information in biochemical networks. Proc. Natl. Acad. Sci. USA 109(20), E1320–E1328 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Bowsher, C.G., Swain, P.S.: Environmental sensing, information transfer, and cellular decision-making. Curr. Opin. Biotechnol 28, 149–155 (2014)CrossRefGoogle Scholar
  12. 12.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)Google Scholar
  13. 13.
    Cheong, R., Rhee, A., Wang, C.J., Nemenman, I., Levchenko, A.: Information transduction capacity of noisy biochemical signaling networks. Science 334(6054), 354–358 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Diana, G., Esposito, M.: Mutual entropy production in bipartite systems. J. Stat. Mech. 2014(4), P04010 (2014)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dekel, E., Alon, U.: Optimality and evolutionary tuning of the expression level of a protein. Nature 436(7050), 588–592 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Dubuis, J.O., Tkac̆ik, G., Wieschaus, E.F., Gregor, T., Bialek, W.: Positional information, in bits. Proc. Natl. Acad. Sci. USA 110(41), 16301–16308 (2013)CrossRefADSMathSciNetMATHGoogle Scholar
  17. 17.
    Endres, R.G., Wingreen, N.S.: Maximum likelihood and the single receptor. Phys. Rev. Lett. 103(15), 158101 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Govern, C.C., ten Wolde, P.R.: Fundamental limits on sensing chemical concentrations with linear biochemical networks. Phys. Rev. Lett. 109, 218103 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Govern, C.C., ten Wolde, P.R.: Optimal resource allocation in cellular sensing systems Proc. Natl. Acad. Sci. USA 111, 1748691 (2014)CrossRefGoogle Scholar
  20. 20.
    Govern, C.C., ten Wolde, P.R.: Energy dissipation and noise correlations in biochemical sensing. Phys. Rev. Lett. 113(25), 258102 (2014)CrossRefADSGoogle Scholar
  21. 21.
    Hartich, D., Barato, A.C., Seifert, U.: Nonequilibrium sensing and its analogy to kinetic proofreading. New J. Phys. 17(5), 055026 (2015)CrossRefADSGoogle Scholar
  22. 22.
    Hill, T.L.: Cooperativity Theory in Biochemistry: Steady-State and Equilibrium Systems. Springer, New York (1985)CrossRefGoogle Scholar
  23. 23.
    Hu, B., Chen, W., Rappel, W.J., Levine, H.: Physical limits on cellular sensing of spatial gradients. Phys. Rev. Lett. 105(4), 048104 (2010)CrossRefADSGoogle Scholar
  24. 24.
    Kaizu, K., de Ronde, W., Paijmans, J., Takahashi, K., Tostevin, F., ten Wolde, P.R.: The berg-purcell limit revisited. Biophys. J. 106(4), 976–985 (2014)CrossRefADSGoogle Scholar
  25. 25.
    Kobayashi, T.J.: Implementation of dynamic Bayesian decision making by intracellular kinetics. Phys. Rev. Lett. 104(22), 228104 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Lan, G., Sartori, P., Neumann, S., Sourjik, V., Tu, Y.: The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8(5), 422–428 (2012)CrossRefGoogle Scholar
  27. 27.
    Lang, A.H., Fisher, C.K., Mora, T., Mehta, P.: Thermodynamics of statistical inference by cells Phys. Rev. Lett. 113, 148103 (2014)CrossRefADSGoogle Scholar
  28. 28.
    Levchenko, A., Nemenman, I.: Cellular noise and information transmission. Curr. Opin. Biotechnol. 28, 156–164 (2014)CrossRefGoogle Scholar
  29. 29.
    Mancini, F., Wiggins, C.H., Marsili, M., Walczak, A.M.: Time-dependent information transmission in a model regulatory circuit. Phys. Rev. E 88(2), 022708 (2013)CrossRefADSGoogle Scholar
  30. 30.
    Mancini, F., Marsili, M., Walczak, A. M.: Trade-offs in delayed information transmission in biochemical networks. arXiv preprint arXiv:1504.03637 (2015)
  31. 31.
    Martins, B.M., Swain, P.S.: Trade-offs and constraints in allosteric sensing. PLoS Comput. Biol. 7, e1002261 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Marzen, S., Garcia, H.G., Phillips, R.: Statistical mechanics of Monod–Wyman–Changeux (MWC) models. J. Mol. Biol. 425(9), 1433–1460 (2013)CrossRefGoogle Scholar
  33. 33.
    Mehta, P., Schwab, D.: Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA 109, 17978 (2012)CrossRefADSGoogle Scholar
  34. 34.
    Mora, T., Wingreen, N.S.: Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104(24), 248101 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Mugler, A., Tostevin, F., ten Wolde, P.R.: Spatial partitioning improves the reliability of biochemical signaling. Proc. Natl. Acad. Sci. USA 110(15), 5927–5932 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Murugan, A., Huse, D.A., Leibler, S.: Speed, dissipation, and error in kinetic proofreading. Proc. Natl. Acad. Sci. USA 109(30), 12034–12039 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Ouldridge, T., Govern, C. , ten Wolde, P. R.: On the connection between computational and biochemical measurement. arXiv preprint arXiv:1503.00909 (2015)
  38. 38.
    Phillips, R., Kondev, J., Theriot, J., Garcia, H.: Physical Biology of the Cell. Garland Science, New York (2012)Google Scholar
  39. 39.
    Rieckh, G., Tkac̆ik, G.: Noise and information transmission in promoters with multiple internal states. Biophys. J. 106(5), 1194–1204 (2014)CrossRefADSGoogle Scholar
  40. 40.
    Qian, H., Reluga, T.C.: Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. Phys. Rev. Lett. 94, 028101 (2005)CrossRefADSGoogle Scholar
  41. 41.
    Qian, H.: Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J. Mol. Biol. 362(3), 387–392 (2006)CrossRefGoogle Scholar
  42. 42.
    Rappel, W.J., Levine, H.: Receptor noise and directional sensing in eukaryotic chemotaxis. Phys. Rev. Lett. 100(22), 228101 (2008)CrossRefADSGoogle Scholar
  43. 43.
    Sartori, P., Pigolotti, S.: Kinetic versus energetic discrimination in biological copying. Phys. Rev. Lett. 110, 188101 (2013)CrossRefADSGoogle Scholar
  44. 44.
    Sartori, P., Granger, L., Lee, C.F., Horowitz, J.M.: Thermodynamic costs of information processing in sensory adaptation. PLos Comput. Biol. 10(12), e1003974 (2014)CrossRefADSGoogle Scholar
  45. 45.
    Selimkhanov, J., Taylor, B., Yao, J., Pilko, A., Albeck, J., Hoffmann, A., Tsimring, L., Wollman, R.: Accurate information transmission through dynamic biochemical signaling networks. Science 346(6215), 1370–1373 (2014)CrossRefADSGoogle Scholar
  46. 46.
    Sevier, S.A., Levine, H.: Properties of cooperatively induced phases in sensing models. Phys. Rev. E 91(5), 052707 (2015)CrossRefADSGoogle Scholar
  47. 47.
    Siggia, E.D., Vergassola, M.: Decisions on the fly in cellular sensory systems. Proc. Natl. Acad. Sci. USA 110(39), E3704–E3712 (2013)CrossRefADSMathSciNetMATHGoogle Scholar
  48. 48.
    Skoge, M., Meir, Y., Wingreen, N.S.: Dynamics of cooperativity in chemical sensing among cell-surface receptors. Phys. Rev. Lett. 107(17), 178101 (2011)CrossRefADSGoogle Scholar
  49. 49.
    Skoge, M., Naqvi, S., Meir, Y., Wingreen, N.S.: Chemical sensing by nonequilibrium cooperative receptors. Phys. Rev. Lett. 110, 248102 (2013)CrossRefADSGoogle Scholar
  50. 50.
    Sun, J., Grabe, M.: Cooperativity can enhance cellular signal detection. arXiv preprint arXiv:1401.3262 (2014)
  51. 51.
    Tănase-Nicola, S., Warren, P.B., ten Wolde, P.R.: Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks. Phys. Rev. Lett. 97(6), 068102 (2006)CrossRefADSGoogle Scholar
  52. 52.
    Tkac̆ik, G., Callan, J.C.G., Bialek, W.: Information flow and optimization in transcriptional regulation. Proc. Natl. Acad. Sci. 105, 12265–12270 (2008)CrossRefADSGoogle Scholar
  53. 53.
    Tkac̆ik, G., Walczak, A.M., Bialek, W.: Optimizing information flow in small genetic networks. Phys. Rev. Lett. 80, 031920 (2009)ADSGoogle Scholar
  54. 54.
    Tkac̆ik, G., Walczak, A.M.: Information transmission in genetic regulatory networks: a review. J. Phys. Condens. Matt. 23(15), 153102 (2011)CrossRefADSGoogle Scholar
  55. 55.
    Tkac̆ik, G., Walczak, A.M., Bialek, W.: Optimizing information flow in small genetic networks. III. A self-interacting gene. Phys. Rev. E 85(4), 041903 (2012)CrossRefADSGoogle Scholar
  56. 56.
    Tostevin, F., Ten Wolde, P.R.: Mutual information between input and output trajectories of biochemical networks. Phys. Rev. Lett. 102(21), 218101 (2009)CrossRefADSGoogle Scholar
  57. 57.
    Tu, Y.: The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwells demons. Proc. Natl. Acad. Sci. USA 105, 1173711741 (2008)ADSGoogle Scholar
  58. 58.
    Uda, S., Saito, T.H., Kudo, T., Kokaji, T., Tsuchiya, T., Kubota, H., Komori, Y., Ozaki, Y., Kuroda, S.: Robustness and compensation of information transmission of signaling pathways. Science 341(6145), 558–561 (2013)CrossRefADSGoogle Scholar
  59. 59.
    Voliotis, M., Perrett, R.M., McWilliams, C., McArdle, C.A., Bowsher, C.G.: Information transfer by leaky, heterogeneous, protein kinase signaling systems. Proc. Natl. Acad. Sci. USA 111(3), E326–E333 (2014)CrossRefADSGoogle Scholar
  60. 60.
    Walczak, A.M., Tkac̆ik, G., Bialek, W.: Optimizing information flow in small genetic networks. II. Feed-forward interactions. Phys. Rev. E 81(4), 041905 (2010)CrossRefADSGoogle Scholar
  61. 61.
    Ziv, E., Nemenman, I., Wiggins, C.H.: Optimal signal processing in small stochastic biochemical networks. PLoS One 2(10), e1077 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Nordita KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.Quantitative Life SciencesThe Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly

Personalised recommendations