Skip to main content

Advertisement

Log in

Poisson Statistics for Matrix Ensembles at Large Temperature

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this article, we consider \(\beta \)-ensembles, i.e. collections of particles with random positions on the real line having joint distribution

$$\begin{aligned} \frac{1}{Z_N(\beta )}\big |\Delta (\lambda )\big |^\beta e^{- \frac{N\beta }{4}\sum _{i=1}^N\lambda _i^2}\mathrm {d}\lambda , \end{aligned}$$

in the regime where \(\beta \rightarrow 0\) as \(N\rightarrow \infty \). We briefly describe the global regime and then consider the local regime. In the case where \(N\beta \) stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where \(N\beta \rightarrow \infty \), we prove a partial result in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allez, R., Guionnet, A.: A diffusive model for invariant \(\beta \)-ensembles. Electron. J. Probab. 18(62), 1–30 (2013)

    MathSciNet  Google Scholar 

  2. Allez, R., Bouchaud, J.-P., Guionnet, A.: Invariant beta ensembles and the Gauss-Wigner crossover. Phys. Rev. Lett. 109(9), 094–102 (2013)

    Google Scholar 

  3. Allez, R., Bouchaud, J.-P., Majumdar, S.N., Vivo, P.: Invariant\(\beta \)-Wishart ensembles, crossover densities and asymptotic corrections to the Marcenko-Pastur law. J. Phys. 46(1), 015001 (2013)

    MathSciNet  ADS  Google Scholar 

  4. Allez, R., Dumaz, L.: From sine kernel to Poisson statistics. Elec. J. Probab. 19, 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  5. Allez, R., Dumaz, L.: Tracy-Widom at high temperature. J. Stat. Phys. 156(6), 1146–1183 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Studies in advanced mathematics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  7. Bao, Z., Su, Z.: Local Semicircle law and Gaussian fluctuation for Hermite \(\beta \)-ensemble. arXiv:1104.3431

  8. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non commutative entropy. Probab. Theory Relat. F. 108, 517–542 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgade, P.: Bulk universality for one-dimensional log-gases. In: Proceedings of the XVIIth International Congress On Mathematical Physics, World Scientific Publishing (2013)

  10. Bourgade, P., Erdös, L., Yau, H.T.: Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys. 53, 095221 (2012). special issue in honor of E. Lieb’s 80th birthday

    Article  MathSciNet  ADS  Google Scholar 

  11. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  12. Bourgade, P., Erdös, L., Yau, H.T.: Edge Universality of \(\beta \)-ensembles. Commun. Math. Phys. (2013)

  13. Bourgade, P., Erdös, L., Yau, H.T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Durrett, R.: Probability : Theory and Examples, 4th edn. Cambridge University, Cambridge (2010)

    Book  Google Scholar 

  15. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Enriquez, N., Ménard, L.: Asymptotic expansion of the expected spectral measure of Wigner matrices. arXiv:1506.03002

  17. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J. 146, 361–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. arXiv:1502.02970 (2015)

  20. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, 335. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  21. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MATH  Google Scholar 

  22. Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs 120, 2nd edn. AMS, Providence (2005)

    MATH  Google Scholar 

  23. Sosoe, P., Wong, P.: Local semicircle law in the bulk for Gaussian \(\beta \)-ensemble. J. Stat. Phys. 148(2), 204–232 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Sosoe, P., Wong, P.: Convergence of the eigenvalue density for \(\beta \)-Laguerre ensembles on short scales. Electron. J. Probab. 19(34), 1–18 (2014)

    MathSciNet  Google Scholar 

  25. Trinh, K.D., Tomoyuki, S.: The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles. arXiv:1504.06904

  26. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 117, 463–508 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Alice Guionnet for her contribution to the proof and her useful suggestions for simplifying the arguments. We also thank Paul Bourgade for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Péché.

Appendix: Poisson Limit for Point Processes

Appendix: Poisson Limit for Point Processes

Let \(\mathcal {X}\) be a locally compact Polish space and \(\mu \) be a Radon measure on \(\mathcal {X}\). We consider an exchangeable random vector \((\lambda _1, \ldots , \lambda _N)\) taking values on \(\mathcal {X}\) implicitly depending on N, with density \(\rho ^{(N)}\) with respect to \(\mu ^{\otimes N}\). We define, for \(1\le k\le N\), the k-th correlation function on \(\mathcal {X}^k\) by the formula

$$\begin{aligned} R^{(N)}_k(x_{1}, \ldots , x_k):=\frac{N!}{(N-k)!}\int _{(x_{k+1},\ldots , x_N)\in \mathcal {X}^{N-k} }\rho ^{(N)}(x_1, \ldots , x_N)\mathrm {d}\mu ^{\otimes N-k}(x_{k+1},\ldots , x_N). \end{aligned}$$

Proposition 5.6

Suppose that there is \(\theta \ge 0\) independent of N such that the correlation functions \(R_k^{(N)}\) satisfy:

  1. (a)

    For each \(k\ge 1\), on \(\mathcal {X}^k\), we have the pointwise convergence

    $$\begin{aligned} R^{(N)}_k(x_{1}, \ldots , x_k)\;\underset{N\rightarrow \infty }{\longrightarrow }\;\theta ^k, \end{aligned}$$
    (63)
  2. (b)

    For each compact \(\mathcal {K}\subset \mathcal {X}\), there is \(\Theta _{\mathcal {K}}\) such that for all kN, on \(\mathcal {K}^k\), we have

    $$\begin{aligned} \mathbbm {1}_{k\le N}R^{(N)}_k(x_{1}, \ldots , x_k) \;\le \;\Theta _{\mathcal {K}}^k \end{aligned}$$
    (64)

Then the point process \(\sum _{i=1}^N\delta _{\lambda _i}\) converges in distribution to a Poisson point process with intensity \(\theta \mathrm {d}\mu \) as \(N\rightarrow \infty \).

Proof

Note that the Poisson point process M with intensity \(\theta \mathrm {d}\mu \) is characterized, among random Radon measures on \(\mathcal {X}\), by the fact that for any compactly supported continuous function f on \(\mathcal {X}\), we have

$$\begin{aligned} {\mathbb {E}}\mathrm {e}^{\langle M, f\rangle }=\exp \left(\theta \int \left( \mathrm {e}^{f(x)}-1\right) \mathrm {d}\mu (x)\right). \end{aligned}$$

So let us fix f a compactly supported continuous function on \(\mathcal {X}\). Then, with the convention \(R_0^{(N)}=1\),

$$\begin{aligned} {\mathbb {E}}\mathrm {e}^{\sum _{i=1}^Nf(\lambda _i)}= & {} {\mathbb {E}}\prod _{i=1}^N\left( 1+(\mathrm {e}^{f(\lambda _i)}-1)\right) \\= & {} \sum _{P\subset \{1, \ldots , n\}}{\mathbb {E}}\prod _{i\in P}\left( \mathrm {e}^{f(\lambda _i)}-1\right) \\= & {} \sum _{k=0}^N\left( {\begin{array}{c}N\\ k\end{array}}\right) {\mathbb {E}}\prod _{i=1}^k\left( \mathrm {e}^{f(\lambda _i)}-1\right) \\= & {} \sum _{k=0}^N\frac{1}{k!}\int \prod _{i=1}^k\left( \mathrm {e}^{f(x_i)}-1\right) R^{(N)}_k(x_{1}, \ldots , x_k)\mathrm {d}\mu ^{\otimes k}(x_1, \ldots , x_k) \end{aligned}$$

This proves the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaych-Georges, F., Péché, S. Poisson Statistics for Matrix Ensembles at Large Temperature. J Stat Phys 161, 633–656 (2015). https://doi.org/10.1007/s10955-015-1340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1340-8

Keywords

Mathematics Subject Classification

Navigation