Skip to main content
Log in

Dynamic Scaling Theory of the Forced Translocation of a Semi-flexible Polymer Through a Nanopore

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a theoretical description of the dynamics of a semi-flexible polymer being pulled through a nanopore by an external force acting at the pore. Our theory is based on the tensile blob picture of Pincus in which the front of the tensile force propagates through the backbone of the polymer, as suggested by Sakaue and recently applied to study a completely flexible polymer with self-avoidance, by Dubbledam et al. For a semi-flexible polymer with a persistence length P, its statistics is self-avoiding for a very long chain. As the local force increases, the blob size starts to decrease. At the blob size \(P^{2}/a\), where a is the size of a monomer, the statistics becomes that of an ideal chain. As the blob size further decreases to below the persistence length P, the statistics is that of a rigid rod. We argue that semi-flexible polymer in translocation should include the three regions: a self-avoiding region, an ideal chain region and a rigid rod region, under uneven tension propagation, instead of a uniform scaling picture as in the case of a completely flexible polymer. In various regimes under the effect of weak, intermediate and strong driving forces we derive equations from which we can calculate the translocation time of the polymer. The translocation exponent is given by \(\alpha =1+\mu \), where \(\mu \) is an effective exponent for the end-to-end distance of the semi-flexible polymer, having a value between 1/2 and 3/5, depending on the total contour length of the polymer. Our results are of relevance for forced translocation of biological polymers such as DNA through a nanopore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ikonen, T., Bhattacharya, A., Ala-Nissila, T., Sung, W.: Unifying model of driven polymer translocation. Phys. Rev. E 85, 051803 (2012)

    Article  ADS  Google Scholar 

  2. Palyulin, V.V., Ala-Nissila, T., Metzler, Ralf: Polymer translocation: the first two decades and the recent diversification. Soft Matter 10, 9016 (2014)

    Article  ADS  Google Scholar 

  3. Panja, D., Barkema, G.T., Kolomeisky, A.B.: Through the eye of the needle: recent advances in understanding biopolymer translocation. J. Phys. Condens. Matter 25, 413101 (2013)

    Article  Google Scholar 

  4. Luo, K., Ala-Nissila, T., Ying, S.-C., Metzler, R.: Driven polymer translocation through nanopores: slow-vs.-fast dynamics. Europhys. Lett. 88, 68006 (2009)

    Article  ADS  Google Scholar 

  5. Dreiseikelmann, B.: Translocation of DNA across bacterial membranes. Microbiol. Rev. 58, 293–316 (1994)

    Google Scholar 

  6. Hanss, B., Leal-Pinto, E., Bruggeman, L.A., Copeland, T.D., Klotman, P.E.: Identification and characterization of a cell membrane nucleic acid channel. Proc. Natl. Acad. Sci. USA 95, 1921–1926 (1998)

    Article  ADS  Google Scholar 

  7. Citovsky, V., Zambryski, P.: Transport of nucleic acids through membrane channels: snaking through small holes. Annu. Rev. Microbiol. 47, 167–197 (1993)

    Article  Google Scholar 

  8. Kasianowicz, J., Brandin, E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996)

    Article  ADS  Google Scholar 

  9. Kasianowicz, J., Bezrukov, S.M.: Protonation dynamics of the alpha-Toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys. J. 69, 94–105 (1995)

    Article  ADS  Google Scholar 

  10. Szabo, I., Bathori, G., Tombola, F., Brini, M., Coppola, A., Zoratti, M.: DNA translocation across planar bilayers containing Bacillus subtilis ion channels. J. Biol. Chem. 272, 25275–25282 (1997)

    Article  Google Scholar 

  11. Szabo, I., Bathori, G., Tombola, F., Coppola, A., Schmehl, I., Brini, M., Ghazi, A., De Pinto, V., Zoratti, M.: Double-stranded DNA can be translocated across a planar membrane containing purified itochondrial porin. FASEB J. 12, 495–502 (1998)

    Google Scholar 

  12. Lubensky, D.K., Nelson, D.R.: Driven polymer translocation through a narrow pore. Biophys. J. 77, 1824–1838 (1999)

    Article  ADS  Google Scholar 

  13. Kantor, Y., Kardar, M.: Anomalous dynamics of forced translocation. Phys. Rev. E 69, 021806 (2004)

    Article  ADS  Google Scholar 

  14. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  15. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon, Oxford (1986)

    Google Scholar 

  16. Dubbeldam, J.L.A., Rostiashvili, V.G., Milchev, A., Vilgis, T.A.: Driven translocation of a polymer: role of pore friction and crowding. J. Chem. Phys. 141, 124112 (2014)

    Article  ADS  Google Scholar 

  17. Sakaue, T.: Sucking genes into pores: insight into driven translocation. Phys. Rev. E 81, 041808 (2010)

    Article  ADS  Google Scholar 

  18. Saito, T., Sakaue, T.: Dynamical diagram and scaling in polymer driven translocation. Eur. Phys. J. E 34, 135 (2011)

    Article  Google Scholar 

  19. Saito, T., Sakaue, T.: Process time distribution of driven polymer transport. Phys. Rev. E 85, 061803 (2012)

    Article  ADS  Google Scholar 

  20. Dubbeldam, J.L.A., Rostiashvili, V.G., Milchev, A., Vilgis, T.A.: Forced translocation of a polymer: dynamical scaling versus molecular dynamics simulation. Phys. Rev. E 85, 041801 (2012)

    Article  ADS  Google Scholar 

  21. Rowghanian, P., Grosberg, A.Y.: Force-driven polymer translocation through a nanopore: an old problem revisited. J. Phys. Chem. B 115, 14127 (2011)

    Article  Google Scholar 

  22. Hsu, H.-P., Paul, W., Binder, K.: Scattering function of semiflexible polymer chains under good solvent conditions. J. Chem. Phys. 137, 174902 (2012)

    Article  ADS  Google Scholar 

  23. Hsu, H.-P., Binder, K.: Stretching semiflexible polymer chains: evidence for the importance of excluded volume effets from Monte Carlo simulation. J. Chem. Phys. 136, 024901 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pui-Man Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, PM., Zhen, Y. Dynamic Scaling Theory of the Forced Translocation of a Semi-flexible Polymer Through a Nanopore. J Stat Phys 161, 197–209 (2015). https://doi.org/10.1007/s10955-015-1322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1322-x

Keywords

Navigation