Advertisement

Journal of Statistical Physics

, Volume 161, Issue 1, pp 91–122 | Cite as

Layered Systems at the Mean Field Critical Temperature

  • Luiz Renato Fontes
  • Domingos H. U. Marchetti
  • Immacolata Merola
  • Errico Presutti
  • Maria Eulalia Vares
Article

Abstract

We consider the Ising model on \(\mathbb Z\times \mathbb Z\) where on each horizontal line \(\{(x,i), x\in \mathbb Z\}\) the interaction is given by a ferromagnetic Kac potential with coupling strength \(J_{ \gamma }(x,y)\sim \gamma J(\gamma (x-y))\) at the mean field critical temperature. We then add a nearest neighbor ferromagnetic vertical interaction of strength \(\epsilon \) and prove that for every \(\epsilon >0\) the systems exhibits phase transition provided \(\gamma >0\) is small enough.

Keywords

Kac potentials Lebowitz–Penrose free energy functional Phase transition 

Mathmatics Subject Classification

60K35 82B20 

Notes

Acknowledgments

MEV thanks the warm hospitality of GSSI, L’Aquila, where part of this research was done. Research partially supported by CNPq Grant 474233/2012-0. MEV’s work is partially supported by CNPq Grant 304217/2011-5 and Faperj Grant E-24/2013-132035. LRF’s work is partially supported by CNPq Grant 305760/2010-6 and Fapesp grant 2009/52379-8.

References

  1. 1.
    Aizenman, M., Klein, A., Newman, C.: Percolation methods for disordered quantum Ising models. In: Kotecky, R. (ed.) Phase Transitions: Mathematics, Physics, Biology, pp. 1–26. World Scientific, Singapore (1993)Google Scholar
  2. 2.
    Bertini, L., Presutti, E., Rüdiger, B., Saada, E.: Dynamical critical fluctuations and convergence to a stochastic non linear PDE in one dimension. Theory Probab. Appl. 38(4), 586–629 (1994). Russian version. Teor. Veroyatnost. i Primenen. 38(4), 689–741 (1993)CrossRefGoogle Scholar
  3. 3.
    Chayes, L., Crawford, N., Ioffe, D., Levit, A.: The phase diagram of the quantum Curie-Weiss model. J. Stat. Phys. 133, 131–149 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Dawson, D.A.: Critical dynamics and fluctuations for a mean field model of cooperative behavior. J. Stat. Phys. 31(1), 29–85 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    Fontes, L.R.G., Marchetti, D.H.U., Merola, I., Presutti, E., Vares, M.E.: Phase transitions in layered systems. J. Stat. Phys. 157, 407–421 (2014)MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    Fritz, J., Rüdiger, B.: Time dependent critical fluctuations of a one-dimensional local mean field model. Probab. Theory Relat. Fields 103(3), 381–407 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Ioffe, D., Levit, A.: Ground states for mean field models with transverse component. J. Stat. Phys. 133, 131–149 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    Lebowitz, J., Penrose, O.: Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition. J. Math. Phys. 7, 98–113 (1966)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Liggett, T.L.: Interacting Particle Systems. Springer, New York (1985)CrossRefMATHGoogle Scholar
  10. 10.
    Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luiz Renato Fontes
    • 1
  • Domingos H. U. Marchetti
    • 2
  • Immacolata Merola
    • 3
  • Errico Presutti
    • 4
  • Maria Eulalia Vares
    • 5
  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.DISIM, Università di L’AquilaL’AquilaItaly
  4. 4.GSSIL’AquilaItaly
  5. 5.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations